Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +727 -0
- config.json +32 -0
- config_sentence_transformers.json +12 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,727 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:14737
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: BAAI/bge-large-en-v1.5
|
12 |
+
widget:
|
13 |
+
- source_sentence: 'Represent this sentence for searching relevant passages: What
|
14 |
+
are some best practices for ensuring images in horizontal cards are visually appealing
|
15 |
+
despite being cropped to fit a square format?'
|
16 |
+
sentences:
|
17 |
+
- 'Tree view
|
18 |
+
|
19 |
+
Usage guidelines
|
20 |
+
|
21 |
+
Horizontal scrolling: If you have a layout that doesn''t allow for users to adjust
|
22 |
+
the width of the container for a tree view, allow them to horizontally scroll
|
23 |
+
in order to see the full depth of the hierarchy.
|
24 |
+
|
25 |
+
Do: Allow horizontal scrolling in a fixed layout.
|
26 |
+
|
27 |
+
'
|
28 |
+
- 'Cards
|
29 |
+
|
30 |
+
Options
|
31 |
+
|
32 |
+
Vertical or horizontal : Standard cards can be laid out vertically (components
|
33 |
+
are organized in a column) or horizontally (components are organized in a row).
|
34 |
+
|
35 |
+
|
36 |
+
Horizontal cards always have a square preview, and the image is cropped to fit
|
37 |
+
inside the square. These can only be laid out in a tile grid where every card
|
38 |
+
is the same size.'
|
39 |
+
- 'Alert dialog
|
40 |
+
|
41 |
+
Behaviors
|
42 |
+
|
43 |
+
Button group overflow: An alert dialog can have up to 3 buttons. When horizontal
|
44 |
+
space is limited, button groups stack vertically. They should appear in ascending
|
45 |
+
order based on importance, with the most critical action at the bottom.'
|
46 |
+
- source_sentence: 'Represent this sentence for searching relevant passages: Are there
|
47 |
+
any guidelines for the timing and smoothness of the fading effect when hovering
|
48 |
+
over a segment in a donut chart?'
|
49 |
+
sentences:
|
50 |
+
- 'Color for data visualization
|
51 |
+
|
52 |
+
Usage guidelines
|
53 |
+
|
54 |
+
Categorical colors are not ordered. Use these for categorical scales. Do not use
|
55 |
+
these for ordinal, interval, or ratio scales.
|
56 |
+
|
57 |
+
Sequential colors are ordered. Use these for ordinal and interval scales. It’s
|
58 |
+
also acceptable to use these for ratio scales. Do not use these for categorical
|
59 |
+
scales.
|
60 |
+
|
61 |
+
Diverging colors are ordered. Use these for ordinal and ratio scales, especially
|
62 |
+
when there is a meaningful middle value. These may also be used for interval scales.
|
63 |
+
Do not use these for categorical scales.'
|
64 |
+
- 'Action group
|
65 |
+
|
66 |
+
Options
|
67 |
+
|
68 |
+
Density: Action groups come in 2 densities: regular and compact. The compact density
|
69 |
+
retains the same font and icon sizes, but has tighter spacing. The action buttons
|
70 |
+
also become connected for non-quiet action groups.'
|
71 |
+
- 'Donut chart
|
72 |
+
|
73 |
+
Behaviors
|
74 |
+
|
75 |
+
Hover: Hovering over a segment of a donut chart causes all other segments to fade
|
76 |
+
back from the view. A tooltip displays the segment name, percentage of total,
|
77 |
+
and metric value.'
|
78 |
+
- source_sentence: 'Represent this sentence for searching relevant passages: Why is
|
79 |
+
it important to orient the legend to match the chart whenever possible?'
|
80 |
+
sentences:
|
81 |
+
- 'Breadcrumbs
|
82 |
+
|
83 |
+
Options
|
84 |
+
|
85 |
+
Multiline: The multiline variation places emphasis on the selected breadcrumb
|
86 |
+
item as a page title, helping a user to more clearly identify their current location.'
|
87 |
+
- 'Cards
|
88 |
+
|
89 |
+
Layout
|
90 |
+
|
91 |
+
Card width: Cards are laid out in either a fluid card grid or have fixed widths.
|
92 |
+
Most cards can be organized within a grid where the width of each card is fluid
|
93 |
+
depending on the nature of the grid. In rare cases where cards can’t be laid out
|
94 |
+
in a card grid, they’ll have a fixed width that is defined manually.'
|
95 |
+
- 'Legend
|
96 |
+
|
97 |
+
Options
|
98 |
+
|
99 |
+
Orientation: Legends can have horizontal or vertical orientation. Whenever possible,
|
100 |
+
orient the legend to match the chart.'
|
101 |
+
- source_sentence: 'Represent this sentence for searching relevant passages: What
|
102 |
+
is the primary use case for radio buttons according to the Adobe Spectrum Design
|
103 |
+
Documentation?'
|
104 |
+
sentences:
|
105 |
+
- 'Radio group
|
106 |
+
|
107 |
+
Usage guidelines
|
108 |
+
|
109 |
+
Use radio buttons for mutually exclusive options: Radio buttons and [checkboxes](/page/checkbox)
|
110 |
+
are not interchangeable. Radio buttons are best used for selecting a single option
|
111 |
+
from a list of mutually exclusive options. Checkboxes are best used for selecting
|
112 |
+
multiple options at once (or no options).
|
113 |
+
|
114 |
+
|
115 |
+
'
|
116 |
+
- 'Additional resources: - [Human Interface Guidelines: iOS Tab Bars](https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/)
|
117 |
+
|
118 |
+
- [Human Interface Guidelines: Accessibility](https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/)
|
119 |
+
|
120 |
+
'
|
121 |
+
- 'Picker
|
122 |
+
|
123 |
+
Options
|
124 |
+
|
125 |
+
Label position: Labels can be placed either on top or on the side. Top labels
|
126 |
+
are the default and are recommended because they work better with long copy, localization,
|
127 |
+
and responsive layouts. Side labels are most useful when vertical space is limited.'
|
128 |
+
- source_sentence: 'Represent this sentence for searching relevant passages: How can
|
129 |
+
a designer balance the need for clear text links and the need for emphasized text
|
130 |
+
in a user interface?'
|
131 |
+
sentences:
|
132 |
+
- 'Meter
|
133 |
+
|
134 |
+
Options
|
135 |
+
|
136 |
+
Positive variant: The positive variant has a green fill to show the value. This
|
137 |
+
can be used to represent a positive semantic value, such as when there’s a lot
|
138 |
+
of space remaining.'
|
139 |
+
- 'Badge
|
140 |
+
|
141 |
+
Options
|
142 |
+
|
143 |
+
Size: Badges come in four different sizes: small, medium, large, and extra-large.
|
144 |
+
The small size is the default and most frequently used option. Use the other sizes
|
145 |
+
sparingly to create a hierarchy of importance on a page.'
|
146 |
+
- 'Typography
|
147 |
+
|
148 |
+
Usage guidelines
|
149 |
+
|
150 |
+
Don''t use underlines for adding emphasis: Underlines are reserved for text links
|
151 |
+
only. They should not be used as a way for adding emphasis to words.
|
152 |
+
|
153 |
+
|
154 |
+
'
|
155 |
+
datasets:
|
156 |
+
- JianLiao/spectrum-design-docs
|
157 |
+
pipeline_tag: sentence-similarity
|
158 |
+
library_name: sentence-transformers
|
159 |
+
metrics:
|
160 |
+
- cosine_accuracy@1
|
161 |
+
- cosine_accuracy@3
|
162 |
+
- cosine_accuracy@5
|
163 |
+
- cosine_accuracy@10
|
164 |
+
- cosine_precision@1
|
165 |
+
- cosine_precision@3
|
166 |
+
- cosine_precision@5
|
167 |
+
- cosine_precision@10
|
168 |
+
- cosine_recall@1
|
169 |
+
- cosine_recall@3
|
170 |
+
- cosine_recall@5
|
171 |
+
- cosine_recall@10
|
172 |
+
- cosine_ndcg@10
|
173 |
+
- cosine_mrr@10
|
174 |
+
- cosine_map@100
|
175 |
+
model-index:
|
176 |
+
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
|
177 |
+
results:
|
178 |
+
- task:
|
179 |
+
type: information-retrieval
|
180 |
+
name: Information Retrieval
|
181 |
+
dataset:
|
182 |
+
name: sds
|
183 |
+
type: sds
|
184 |
+
metrics:
|
185 |
+
- type: cosine_accuracy@1
|
186 |
+
value: 0.007462686567164179
|
187 |
+
name: Cosine Accuracy@1
|
188 |
+
- type: cosine_accuracy@3
|
189 |
+
value: 0.015603799185888738
|
190 |
+
name: Cosine Accuracy@3
|
191 |
+
- type: cosine_accuracy@5
|
192 |
+
value: 0.04748982360922659
|
193 |
+
name: Cosine Accuracy@5
|
194 |
+
- type: cosine_accuracy@10
|
195 |
+
value: 0.7815468113975577
|
196 |
+
name: Cosine Accuracy@10
|
197 |
+
- type: cosine_precision@1
|
198 |
+
value: 0.007462686567164179
|
199 |
+
name: Cosine Precision@1
|
200 |
+
- type: cosine_precision@3
|
201 |
+
value: 0.005201266395296246
|
202 |
+
name: Cosine Precision@3
|
203 |
+
- type: cosine_precision@5
|
204 |
+
value: 0.009497964721845319
|
205 |
+
name: Cosine Precision@5
|
206 |
+
- type: cosine_precision@10
|
207 |
+
value: 0.07815468113975575
|
208 |
+
name: Cosine Precision@10
|
209 |
+
- type: cosine_recall@1
|
210 |
+
value: 0.007462686567164179
|
211 |
+
name: Cosine Recall@1
|
212 |
+
- type: cosine_recall@3
|
213 |
+
value: 0.015603799185888738
|
214 |
+
name: Cosine Recall@3
|
215 |
+
- type: cosine_recall@5
|
216 |
+
value: 0.04748982360922659
|
217 |
+
name: Cosine Recall@5
|
218 |
+
- type: cosine_recall@10
|
219 |
+
value: 0.7815468113975577
|
220 |
+
name: Cosine Recall@10
|
221 |
+
- type: cosine_ndcg@10
|
222 |
+
value: 0.25440066233238845
|
223 |
+
name: Cosine Ndcg@10
|
224 |
+
- type: cosine_mrr@10
|
225 |
+
value: 0.10778547737502948
|
226 |
+
name: Cosine Mrr@10
|
227 |
+
- type: cosine_map@100
|
228 |
+
value: 0.11639203259428242
|
229 |
+
name: Cosine Map@100
|
230 |
+
---
|
231 |
+
|
232 |
+
# SentenceTransformer based on BAAI/bge-large-en-v1.5
|
233 |
+
|
234 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
235 |
+
|
236 |
+
## Model Details
|
237 |
+
|
238 |
+
### Model Description
|
239 |
+
- **Model Type:** Sentence Transformer
|
240 |
+
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
|
241 |
+
- **Maximum Sequence Length:** 512 tokens
|
242 |
+
- **Output Dimensionality:** 1024 dimensions
|
243 |
+
- **Similarity Function:** Cosine Similarity
|
244 |
+
- **Training Dataset:**
|
245 |
+
- [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs)
|
246 |
+
- **Language:** en
|
247 |
+
<!-- - **License:** Unknown -->
|
248 |
+
|
249 |
+
### Model Sources
|
250 |
+
|
251 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
252 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
253 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
254 |
+
|
255 |
+
### Full Model Architecture
|
256 |
+
|
257 |
+
```
|
258 |
+
SentenceTransformer(
|
259 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
260 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
261 |
+
(2): Normalize()
|
262 |
+
)
|
263 |
+
```
|
264 |
+
|
265 |
+
## Usage
|
266 |
+
|
267 |
+
### Direct Usage (Sentence Transformers)
|
268 |
+
|
269 |
+
First install the Sentence Transformers library:
|
270 |
+
|
271 |
+
```bash
|
272 |
+
pip install -U sentence-transformers
|
273 |
+
```
|
274 |
+
|
275 |
+
Then you can load this model and run inference.
|
276 |
+
```python
|
277 |
+
from sentence_transformers import SentenceTransformer
|
278 |
+
|
279 |
+
# Download from the 🤗 Hub
|
280 |
+
model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
|
281 |
+
# Run inference
|
282 |
+
sentences = [
|
283 |
+
'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
|
284 |
+
"Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
|
285 |
+
'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
|
286 |
+
]
|
287 |
+
embeddings = model.encode(sentences)
|
288 |
+
print(embeddings.shape)
|
289 |
+
# [3, 1024]
|
290 |
+
|
291 |
+
# Get the similarity scores for the embeddings
|
292 |
+
similarities = model.similarity(embeddings, embeddings)
|
293 |
+
print(similarities.shape)
|
294 |
+
# [3, 3]
|
295 |
+
```
|
296 |
+
|
297 |
+
<!--
|
298 |
+
### Direct Usage (Transformers)
|
299 |
+
|
300 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
301 |
+
|
302 |
+
</details>
|
303 |
+
-->
|
304 |
+
|
305 |
+
<!--
|
306 |
+
### Downstream Usage (Sentence Transformers)
|
307 |
+
|
308 |
+
You can finetune this model on your own dataset.
|
309 |
+
|
310 |
+
<details><summary>Click to expand</summary>
|
311 |
+
|
312 |
+
</details>
|
313 |
+
-->
|
314 |
+
|
315 |
+
<!--
|
316 |
+
### Out-of-Scope Use
|
317 |
+
|
318 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
319 |
+
-->
|
320 |
+
|
321 |
+
## Evaluation
|
322 |
+
|
323 |
+
### Metrics
|
324 |
+
|
325 |
+
#### Information Retrieval
|
326 |
+
|
327 |
+
* Dataset: `sds`
|
328 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
329 |
+
|
330 |
+
| Metric | Value |
|
331 |
+
|:--------------------|:-----------|
|
332 |
+
| cosine_accuracy@1 | 0.0075 |
|
333 |
+
| cosine_accuracy@3 | 0.0156 |
|
334 |
+
| cosine_accuracy@5 | 0.0475 |
|
335 |
+
| cosine_accuracy@10 | 0.7815 |
|
336 |
+
| cosine_precision@1 | 0.0075 |
|
337 |
+
| cosine_precision@3 | 0.0052 |
|
338 |
+
| cosine_precision@5 | 0.0095 |
|
339 |
+
| cosine_precision@10 | 0.0782 |
|
340 |
+
| cosine_recall@1 | 0.0075 |
|
341 |
+
| cosine_recall@3 | 0.0156 |
|
342 |
+
| cosine_recall@5 | 0.0475 |
|
343 |
+
| cosine_recall@10 | 0.7815 |
|
344 |
+
| **cosine_ndcg@10** | **0.2544** |
|
345 |
+
| cosine_mrr@10 | 0.1078 |
|
346 |
+
| cosine_map@100 | 0.1164 |
|
347 |
+
|
348 |
+
<!--
|
349 |
+
## Bias, Risks and Limitations
|
350 |
+
|
351 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
352 |
+
-->
|
353 |
+
|
354 |
+
<!--
|
355 |
+
### Recommendations
|
356 |
+
|
357 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
358 |
+
-->
|
359 |
+
|
360 |
+
## Training Details
|
361 |
+
|
362 |
+
### Training Dataset
|
363 |
+
|
364 |
+
#### spectrum-design-docs
|
365 |
+
|
366 |
+
* Dataset: [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) at [23f5565](https://huggingface.co/datasets/JianLiao/spectrum-design-docs/tree/23f5565f9fc1cfe31d1245ca9e5368f00fcaec00)
|
367 |
+
* Size: 14,737 training samples
|
368 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
369 |
+
* Approximate statistics based on the first 1000 samples:
|
370 |
+
| | anchor | positive |
|
371 |
+
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
372 |
+
| type | string | string |
|
373 |
+
| details | <ul><li>min: 20 tokens</li><li>mean: 30.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 97.17 tokens</li><li>max: 512 tokens</li></ul> |
|
374 |
+
* Samples:
|
375 |
+
| anchor | positive |
|
376 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
377 |
+
| <code>Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project?</code> | <code>Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team. <br><div class="well-box">Dependency chain: Spectrum DNA → Spectrum CSS</div><br><br>[GitHub repository](https://github.com/adobe/spectrum-css/) <br>[Website](https://opensource.adobe.com/spectrum-css/) <br>[#spectrum_css](https://adobe.slack.com/archives/C5N154FEY)</code> |
|
378 |
+
| <code>Represent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI?</code> | <code>Progress circle<br>Options<br>Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).</code> |
|
379 |
+
| <code>Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs?</code> | <code>Legend<br>Behaviors<br>Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown.</code> |
|
380 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
381 |
+
```json
|
382 |
+
{
|
383 |
+
"scale": 20.0,
|
384 |
+
"similarity_fct": "cos_sim"
|
385 |
+
}
|
386 |
+
```
|
387 |
+
|
388 |
+
### Training Hyperparameters
|
389 |
+
#### Non-Default Hyperparameters
|
390 |
+
|
391 |
+
- `eval_strategy`: epoch
|
392 |
+
- `per_device_train_batch_size`: 22
|
393 |
+
- `per_device_eval_batch_size`: 16
|
394 |
+
- `gradient_accumulation_steps`: 16
|
395 |
+
- `learning_rate`: 2e-05
|
396 |
+
- `num_train_epochs`: 100
|
397 |
+
- `lr_scheduler_type`: cosine
|
398 |
+
- `warmup_ratio`: 0.1
|
399 |
+
- `bf16`: True
|
400 |
+
- `tf32`: True
|
401 |
+
- `load_best_model_at_end`: True
|
402 |
+
- `optim`: adamw_torch_fused
|
403 |
+
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
|
404 |
+
- `batch_sampler`: no_duplicates
|
405 |
+
|
406 |
+
#### All Hyperparameters
|
407 |
+
<details><summary>Click to expand</summary>
|
408 |
+
|
409 |
+
- `overwrite_output_dir`: False
|
410 |
+
- `do_predict`: False
|
411 |
+
- `eval_strategy`: epoch
|
412 |
+
- `prediction_loss_only`: True
|
413 |
+
- `per_device_train_batch_size`: 22
|
414 |
+
- `per_device_eval_batch_size`: 16
|
415 |
+
- `per_gpu_train_batch_size`: None
|
416 |
+
- `per_gpu_eval_batch_size`: None
|
417 |
+
- `gradient_accumulation_steps`: 16
|
418 |
+
- `eval_accumulation_steps`: None
|
419 |
+
- `torch_empty_cache_steps`: None
|
420 |
+
- `learning_rate`: 2e-05
|
421 |
+
- `weight_decay`: 0.0
|
422 |
+
- `adam_beta1`: 0.9
|
423 |
+
- `adam_beta2`: 0.999
|
424 |
+
- `adam_epsilon`: 1e-08
|
425 |
+
- `max_grad_norm`: 1.0
|
426 |
+
- `num_train_epochs`: 100
|
427 |
+
- `max_steps`: -1
|
428 |
+
- `lr_scheduler_type`: cosine
|
429 |
+
- `lr_scheduler_kwargs`: {}
|
430 |
+
- `warmup_ratio`: 0.1
|
431 |
+
- `warmup_steps`: 0
|
432 |
+
- `log_level`: passive
|
433 |
+
- `log_level_replica`: warning
|
434 |
+
- `log_on_each_node`: True
|
435 |
+
- `logging_nan_inf_filter`: True
|
436 |
+
- `save_safetensors`: True
|
437 |
+
- `save_on_each_node`: False
|
438 |
+
- `save_only_model`: False
|
439 |
+
- `restore_callback_states_from_checkpoint`: False
|
440 |
+
- `no_cuda`: False
|
441 |
+
- `use_cpu`: False
|
442 |
+
- `use_mps_device`: False
|
443 |
+
- `seed`: 42
|
444 |
+
- `data_seed`: None
|
445 |
+
- `jit_mode_eval`: False
|
446 |
+
- `use_ipex`: False
|
447 |
+
- `bf16`: True
|
448 |
+
- `fp16`: False
|
449 |
+
- `fp16_opt_level`: O1
|
450 |
+
- `half_precision_backend`: auto
|
451 |
+
- `bf16_full_eval`: False
|
452 |
+
- `fp16_full_eval`: False
|
453 |
+
- `tf32`: True
|
454 |
+
- `local_rank`: 0
|
455 |
+
- `ddp_backend`: None
|
456 |
+
- `tpu_num_cores`: None
|
457 |
+
- `tpu_metrics_debug`: False
|
458 |
+
- `debug`: []
|
459 |
+
- `dataloader_drop_last`: True
|
460 |
+
- `dataloader_num_workers`: 0
|
461 |
+
- `dataloader_prefetch_factor`: None
|
462 |
+
- `past_index`: -1
|
463 |
+
- `disable_tqdm`: False
|
464 |
+
- `remove_unused_columns`: True
|
465 |
+
- `label_names`: None
|
466 |
+
- `load_best_model_at_end`: True
|
467 |
+
- `ignore_data_skip`: False
|
468 |
+
- `fsdp`: []
|
469 |
+
- `fsdp_min_num_params`: 0
|
470 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
471 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
472 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
473 |
+
- `deepspeed`: None
|
474 |
+
- `label_smoothing_factor`: 0.0
|
475 |
+
- `optim`: adamw_torch_fused
|
476 |
+
- `optim_args`: None
|
477 |
+
- `adafactor`: False
|
478 |
+
- `group_by_length`: False
|
479 |
+
- `length_column_name`: length
|
480 |
+
- `ddp_find_unused_parameters`: None
|
481 |
+
- `ddp_bucket_cap_mb`: None
|
482 |
+
- `ddp_broadcast_buffers`: False
|
483 |
+
- `dataloader_pin_memory`: True
|
484 |
+
- `dataloader_persistent_workers`: False
|
485 |
+
- `skip_memory_metrics`: True
|
486 |
+
- `use_legacy_prediction_loop`: False
|
487 |
+
- `push_to_hub`: False
|
488 |
+
- `resume_from_checkpoint`: None
|
489 |
+
- `hub_model_id`: None
|
490 |
+
- `hub_strategy`: every_save
|
491 |
+
- `hub_private_repo`: None
|
492 |
+
- `hub_always_push`: False
|
493 |
+
- `gradient_checkpointing`: False
|
494 |
+
- `gradient_checkpointing_kwargs`: None
|
495 |
+
- `include_inputs_for_metrics`: False
|
496 |
+
- `include_for_metrics`: []
|
497 |
+
- `eval_do_concat_batches`: True
|
498 |
+
- `fp16_backend`: auto
|
499 |
+
- `push_to_hub_model_id`: None
|
500 |
+
- `push_to_hub_organization`: None
|
501 |
+
- `mp_parameters`:
|
502 |
+
- `auto_find_batch_size`: False
|
503 |
+
- `full_determinism`: False
|
504 |
+
- `torchdynamo`: None
|
505 |
+
- `ray_scope`: last
|
506 |
+
- `ddp_timeout`: 1800
|
507 |
+
- `torch_compile`: False
|
508 |
+
- `torch_compile_backend`: None
|
509 |
+
- `torch_compile_mode`: None
|
510 |
+
- `dispatch_batches`: None
|
511 |
+
- `split_batches`: None
|
512 |
+
- `include_tokens_per_second`: False
|
513 |
+
- `include_num_input_tokens_seen`: False
|
514 |
+
- `neftune_noise_alpha`: None
|
515 |
+
- `optim_target_modules`: None
|
516 |
+
- `batch_eval_metrics`: False
|
517 |
+
- `eval_on_start`: False
|
518 |
+
- `use_liger_kernel`: False
|
519 |
+
- `eval_use_gather_object`: False
|
520 |
+
- `average_tokens_across_devices`: False
|
521 |
+
- `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
|
522 |
+
- `batch_sampler`: no_duplicates
|
523 |
+
- `multi_dataset_batch_sampler`: proportional
|
524 |
+
|
525 |
+
</details>
|
526 |
+
|
527 |
+
### Training Logs
|
528 |
+
<details><summary>Click to expand</summary>
|
529 |
+
|
530 |
+
| Epoch | Step | Training Loss | sds_cosine_ndcg@10 |
|
531 |
+
|:--------:|:-------:|:-------------:|:------------------:|
|
532 |
+
| 1.0 | 7 | - | 0.2255 |
|
533 |
+
| 1.48 | 10 | 0.2646 | - |
|
534 |
+
| 2.0 | 14 | - | 0.2282 |
|
535 |
+
| 2.96 | 20 | 0.1412 | - |
|
536 |
+
| 3.0 | 21 | - | 0.2358 |
|
537 |
+
| 4.0 | 28 | - | 0.2397 |
|
538 |
+
| 4.32 | 30 | 0.0638 | - |
|
539 |
+
| 5.0 | 35 | - | 0.2430 |
|
540 |
+
| 5.8 | 40 | 0.0425 | - |
|
541 |
+
| 6.0 | 42 | - | 0.2449 |
|
542 |
+
| 7.0 | 49 | - | 0.2462 |
|
543 |
+
| 7.16 | 50 | 0.0237 | - |
|
544 |
+
| 8.0 | 56 | - | 0.2428 |
|
545 |
+
| 8.64 | 60 | 0.015 | - |
|
546 |
+
| 9.0 | 63 | - | 0.2456 |
|
547 |
+
| 10.0 | 70 | 0.0082 | 0.2456 |
|
548 |
+
| 11.0 | 77 | - | 0.2498 |
|
549 |
+
| 11.48 | 80 | 0.0052 | - |
|
550 |
+
| 12.0 | 84 | - | 0.2474 |
|
551 |
+
| 12.96 | 90 | 0.0035 | - |
|
552 |
+
| 13.0 | 91 | - | 0.2455 |
|
553 |
+
| 14.0 | 98 | - | 0.2475 |
|
554 |
+
| 14.32 | 100 | 0.0022 | - |
|
555 |
+
| 15.0 | 105 | - | 0.2472 |
|
556 |
+
| 15.8 | 110 | 0.002 | - |
|
557 |
+
| 16.0 | 112 | - | 0.2486 |
|
558 |
+
| 17.0 | 119 | - | 0.2506 |
|
559 |
+
| 17.16 | 120 | 0.0015 | - |
|
560 |
+
| 18.0 | 126 | - | 0.2490 |
|
561 |
+
| 18.64 | 130 | 0.0013 | - |
|
562 |
+
| 19.0 | 133 | - | 0.2489 |
|
563 |
+
| 20.0 | 140 | 0.0012 | 0.2491 |
|
564 |
+
| 21.0 | 147 | - | 0.2493 |
|
565 |
+
| 21.48 | 150 | 0.0011 | - |
|
566 |
+
| 22.0 | 154 | - | 0.2487 |
|
567 |
+
| 22.96 | 160 | 0.001 | - |
|
568 |
+
| 23.0 | 161 | - | 0.2486 |
|
569 |
+
| 24.0 | 168 | - | 0.2490 |
|
570 |
+
| 24.32 | 170 | 0.0008 | - |
|
571 |
+
| 25.0 | 175 | - | 0.2502 |
|
572 |
+
| 25.8 | 180 | 0.0008 | - |
|
573 |
+
| 26.0 | 182 | - | 0.2505 |
|
574 |
+
| 27.0 | 189 | - | 0.2523 |
|
575 |
+
| 27.16 | 190 | 0.0008 | - |
|
576 |
+
| 28.0 | 196 | - | 0.2516 |
|
577 |
+
| 28.64 | 200 | 0.0007 | - |
|
578 |
+
| 29.0 | 203 | - | 0.2509 |
|
579 |
+
| 30.0 | 210 | 0.0007 | 0.2522 |
|
580 |
+
| 31.0 | 217 | - | 0.2522 |
|
581 |
+
| 31.48 | 220 | 0.0006 | - |
|
582 |
+
| 32.0 | 224 | - | 0.2534 |
|
583 |
+
| 32.96 | 230 | 0.0007 | - |
|
584 |
+
| 33.0 | 231 | - | 0.2523 |
|
585 |
+
| 34.0 | 238 | - | 0.2524 |
|
586 |
+
| 34.32 | 240 | 0.0006 | - |
|
587 |
+
| 35.0 | 245 | - | 0.2518 |
|
588 |
+
| 35.8 | 250 | 0.0006 | - |
|
589 |
+
| 36.0 | 252 | - | 0.2529 |
|
590 |
+
| 37.0 | 259 | - | 0.2524 |
|
591 |
+
| 37.16 | 260 | 0.0006 | - |
|
592 |
+
| 38.0 | 266 | - | 0.2530 |
|
593 |
+
| 38.64 | 270 | 0.0005 | - |
|
594 |
+
| 39.0 | 273 | - | 0.2526 |
|
595 |
+
| 40.0 | 280 | 0.0006 | 0.2539 |
|
596 |
+
| 41.0 | 287 | - | 0.2529 |
|
597 |
+
| 41.48 | 290 | 0.0005 | - |
|
598 |
+
| 42.0 | 294 | - | 0.2545 |
|
599 |
+
| 42.96 | 300 | 0.0006 | - |
|
600 |
+
| 43.0 | 301 | - | 0.2534 |
|
601 |
+
| 44.0 | 308 | - | 0.2536 |
|
602 |
+
| 44.32 | 310 | 0.0004 | - |
|
603 |
+
| 45.0 | 315 | - | 0.2521 |
|
604 |
+
| 45.8 | 320 | 0.0005 | - |
|
605 |
+
| 46.0 | 322 | - | 0.2532 |
|
606 |
+
| 47.0 | 329 | - | 0.2519 |
|
607 |
+
| 47.16 | 330 | 0.0005 | - |
|
608 |
+
| 48.0 | 336 | - | 0.2525 |
|
609 |
+
| 48.64 | 340 | 0.0004 | - |
|
610 |
+
| 49.0 | 343 | - | 0.2535 |
|
611 |
+
| 50.0 | 350 | 0.0005 | 0.2542 |
|
612 |
+
| 51.0 | 357 | - | 0.2540 |
|
613 |
+
| 51.48 | 360 | 0.0004 | - |
|
614 |
+
| 52.0 | 364 | - | 0.2542 |
|
615 |
+
| 52.96 | 370 | 0.0005 | - |
|
616 |
+
| 53.0 | 371 | - | 0.2538 |
|
617 |
+
| 54.0 | 378 | - | 0.2533 |
|
618 |
+
| 54.32 | 380 | 0.0004 | - |
|
619 |
+
| 55.0 | 385 | - | 0.2544 |
|
620 |
+
| 55.8 | 390 | 0.0004 | - |
|
621 |
+
| 56.0 | 392 | - | 0.2539 |
|
622 |
+
| 57.0 | 399 | - | 0.2541 |
|
623 |
+
| 57.16 | 400 | 0.0005 | - |
|
624 |
+
| 58.0 | 406 | - | 0.2532 |
|
625 |
+
| 58.64 | 410 | 0.0004 | - |
|
626 |
+
| 59.0 | 413 | - | 0.2543 |
|
627 |
+
| 60.0 | 420 | 0.0004 | 0.2532 |
|
628 |
+
| 61.0 | 427 | - | 0.2541 |
|
629 |
+
| 61.48 | 430 | 0.0004 | - |
|
630 |
+
| 62.0 | 434 | - | 0.2542 |
|
631 |
+
| 62.96 | 440 | 0.0005 | - |
|
632 |
+
| 63.0 | 441 | - | 0.2546 |
|
633 |
+
| 64.0 | 448 | - | 0.2549 |
|
634 |
+
| 64.32 | 450 | 0.0003 | - |
|
635 |
+
| **65.0** | **455** | **-** | **0.2557** |
|
636 |
+
| 65.8 | 460 | 0.0004 | - |
|
637 |
+
| 66.0 | 462 | - | 0.2557 |
|
638 |
+
| 67.0 | 469 | - | 0.2539 |
|
639 |
+
| 67.16 | 470 | 0.0004 | - |
|
640 |
+
| 68.0 | 476 | - | 0.2538 |
|
641 |
+
| 68.64 | 480 | 0.0004 | - |
|
642 |
+
| 69.0 | 483 | - | 0.2538 |
|
643 |
+
| 70.0 | 490 | 0.0004 | 0.2542 |
|
644 |
+
| 71.0 | 497 | - | 0.2532 |
|
645 |
+
| 71.48 | 500 | 0.0004 | - |
|
646 |
+
| 72.0 | 504 | - | 0.2538 |
|
647 |
+
| 72.96 | 510 | 0.0004 | - |
|
648 |
+
| 73.0 | 511 | - | 0.2545 |
|
649 |
+
| 74.0 | 518 | - | 0.2531 |
|
650 |
+
| 74.32 | 520 | 0.0003 | - |
|
651 |
+
| 75.0 | 525 | - | 0.2534 |
|
652 |
+
| 75.8 | 530 | 0.0004 | - |
|
653 |
+
| 76.0 | 532 | - | 0.2541 |
|
654 |
+
| 77.0 | 539 | - | 0.2545 |
|
655 |
+
| 77.16 | 540 | 0.0004 | - |
|
656 |
+
| 78.0 | 546 | - | 0.2536 |
|
657 |
+
| 78.64 | 550 | 0.0004 | - |
|
658 |
+
| 79.0 | 553 | - | 0.2545 |
|
659 |
+
| 80.0 | 560 | 0.0004 | 0.2540 |
|
660 |
+
| 81.0 | 567 | - | 0.2545 |
|
661 |
+
| 81.48 | 570 | 0.0004 | - |
|
662 |
+
| 82.0 | 574 | - | 0.2541 |
|
663 |
+
| 82.96 | 580 | 0.0004 | - |
|
664 |
+
| 83.0 | 581 | - | 0.2545 |
|
665 |
+
| 84.0 | 588 | - | 0.2538 |
|
666 |
+
| 84.32 | 590 | 0.0004 | - |
|
667 |
+
| 85.0 | 595 | - | 0.2546 |
|
668 |
+
| 85.8 | 600 | 0.0004 | 0.2544 |
|
669 |
+
|
670 |
+
* The bold row denotes the saved checkpoint.
|
671 |
+
</details>
|
672 |
+
|
673 |
+
### Framework Versions
|
674 |
+
- Python: 3.12.8
|
675 |
+
- Sentence Transformers: 3.3.1
|
676 |
+
- Transformers: 4.47.1
|
677 |
+
- PyTorch: 2.5.1+cu124
|
678 |
+
- Accelerate: 1.2.1
|
679 |
+
- Datasets: 3.2.0
|
680 |
+
- Tokenizers: 0.21.0
|
681 |
+
|
682 |
+
## Citation
|
683 |
+
|
684 |
+
### BibTeX
|
685 |
+
|
686 |
+
#### Sentence Transformers
|
687 |
+
```bibtex
|
688 |
+
@inproceedings{reimers-2019-sentence-bert,
|
689 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
690 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
691 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
692 |
+
month = "11",
|
693 |
+
year = "2019",
|
694 |
+
publisher = "Association for Computational Linguistics",
|
695 |
+
url = "https://arxiv.org/abs/1908.10084",
|
696 |
+
}
|
697 |
+
```
|
698 |
+
|
699 |
+
#### MultipleNegativesRankingLoss
|
700 |
+
```bibtex
|
701 |
+
@misc{henderson2017efficient,
|
702 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
703 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
704 |
+
year={2017},
|
705 |
+
eprint={1705.00652},
|
706 |
+
archivePrefix={arXiv},
|
707 |
+
primaryClass={cs.CL}
|
708 |
+
}
|
709 |
+
```
|
710 |
+
|
711 |
+
<!--
|
712 |
+
## Glossary
|
713 |
+
|
714 |
+
*Clearly define terms in order to be accessible across audiences.*
|
715 |
+
-->
|
716 |
+
|
717 |
+
<!--
|
718 |
+
## Model Card Authors
|
719 |
+
|
720 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
721 |
+
-->
|
722 |
+
|
723 |
+
<!--
|
724 |
+
## Model Card Contact
|
725 |
+
|
726 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
727 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./ft-v3.0.0",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.47.1",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"anchor": "Represent this sentence for searching relevant passages: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3e7b0abdb38881b87c3e79e4d866887ef4cc01a9ce4faccc124b1b2cedbaf3d
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"max_length": 512,
|
51 |
+
"model_max_length": 512,
|
52 |
+
"never_split": null,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "[PAD]",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "[SEP]",
|
58 |
+
"stride": 0,
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"truncation_side": "right",
|
63 |
+
"truncation_strategy": "longest_first",
|
64 |
+
"unk_token": "[UNK]"
|
65 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|