JianLiao commited on
Commit
0c589a5
·
verified ·
1 Parent(s): c9fc0d3

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,727 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:14737
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: BAAI/bge-large-en-v1.5
12
+ widget:
13
+ - source_sentence: 'Represent this sentence for searching relevant passages: What
14
+ are some best practices for ensuring images in horizontal cards are visually appealing
15
+ despite being cropped to fit a square format?'
16
+ sentences:
17
+ - 'Tree view
18
+
19
+ Usage guidelines
20
+
21
+ Horizontal scrolling: If you have a layout that doesn''t allow for users to adjust
22
+ the width of the container for a tree view, allow them to horizontally scroll
23
+ in order to see the full depth of the hierarchy.
24
+
25
+ Do: Allow horizontal scrolling in a fixed layout.
26
+
27
+ '
28
+ - 'Cards
29
+
30
+ Options
31
+
32
+ Vertical or horizontal : Standard cards can be laid out vertically (components
33
+ are organized in a column) or horizontally (components are organized in a row).
34
+
35
+
36
+ Horizontal cards always have a square preview, and the image is cropped to fit
37
+ inside the square. These can only be laid out in a tile grid where every card
38
+ is the same size.'
39
+ - 'Alert dialog
40
+
41
+ Behaviors
42
+
43
+ Button group overflow: An alert dialog can have up to 3 buttons. When horizontal
44
+ space is limited, button groups stack vertically. They should appear in ascending
45
+ order based on importance, with the most critical action at the bottom.'
46
+ - source_sentence: 'Represent this sentence for searching relevant passages: Are there
47
+ any guidelines for the timing and smoothness of the fading effect when hovering
48
+ over a segment in a donut chart?'
49
+ sentences:
50
+ - 'Color for data visualization
51
+
52
+ Usage guidelines
53
+
54
+ Categorical colors are not ordered. Use these for categorical scales. Do not use
55
+ these for ordinal, interval, or ratio scales.
56
+
57
+ Sequential colors are ordered. Use these for ordinal and interval scales. It’s
58
+ also acceptable to use these for ratio scales. Do not use these for categorical
59
+ scales.
60
+
61
+ Diverging colors are ordered. Use these for ordinal and ratio scales, especially
62
+ when there is a meaningful middle value. These may also be used for interval scales.
63
+ Do not use these for categorical scales.'
64
+ - 'Action group
65
+
66
+ Options
67
+
68
+ Density: Action groups come in 2 densities: regular and compact. The compact density
69
+ retains the same font and icon sizes, but has tighter spacing. The action buttons
70
+ also become connected for non-quiet action groups.'
71
+ - 'Donut chart
72
+
73
+ Behaviors
74
+
75
+ Hover: Hovering over a segment of a donut chart causes all other segments to fade
76
+ back from the view. A tooltip displays the segment name, percentage of total,
77
+ and metric value.'
78
+ - source_sentence: 'Represent this sentence for searching relevant passages: Why is
79
+ it important to orient the legend to match the chart whenever possible?'
80
+ sentences:
81
+ - 'Breadcrumbs
82
+
83
+ Options
84
+
85
+ Multiline: The multiline variation places emphasis on the selected breadcrumb
86
+ item as a page title, helping a user to more clearly identify their current location.'
87
+ - 'Cards
88
+
89
+ Layout
90
+
91
+ Card width: Cards are laid out in either a fluid card grid or have fixed widths.
92
+ Most cards can be organized within a grid where the width of each card is fluid
93
+ depending on the nature of the grid. In rare cases where cards can’t be laid out
94
+ in a card grid, they’ll have a fixed width that is defined manually.'
95
+ - 'Legend
96
+
97
+ Options
98
+
99
+ Orientation: Legends can have horizontal or vertical orientation. Whenever possible,
100
+ orient the legend to match the chart.'
101
+ - source_sentence: 'Represent this sentence for searching relevant passages: What
102
+ is the primary use case for radio buttons according to the Adobe Spectrum Design
103
+ Documentation?'
104
+ sentences:
105
+ - 'Radio group
106
+
107
+ Usage guidelines
108
+
109
+ Use radio buttons for mutually exclusive options: Radio buttons and [checkboxes](/page/checkbox)
110
+ are not interchangeable. Radio buttons are best used for selecting a single option
111
+ from a list of mutually exclusive options. Checkboxes are best used for selecting
112
+ multiple options at once (or no options).
113
+
114
+
115
+ '
116
+ - 'Additional resources: - [Human Interface Guidelines: iOS Tab Bars](https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/)
117
+
118
+ - [Human Interface Guidelines: Accessibility](https://developer.apple.com/design/human-interface-guidelines/accessibility/overview/introduction/)
119
+
120
+ '
121
+ - 'Picker
122
+
123
+ Options
124
+
125
+ Label position: Labels can be placed either on top or on the side. Top labels
126
+ are the default and are recommended because they work better with long copy, localization,
127
+ and responsive layouts. Side labels are most useful when vertical space is limited.'
128
+ - source_sentence: 'Represent this sentence for searching relevant passages: How can
129
+ a designer balance the need for clear text links and the need for emphasized text
130
+ in a user interface?'
131
+ sentences:
132
+ - 'Meter
133
+
134
+ Options
135
+
136
+ Positive variant: The positive variant has a green fill to show the value. This
137
+ can be used to represent a positive semantic value, such as when there’s a lot
138
+ of space remaining.'
139
+ - 'Badge
140
+
141
+ Options
142
+
143
+ Size: Badges come in four different sizes: small, medium, large, and extra-large.
144
+ The small size is the default and most frequently used option. Use the other sizes
145
+ sparingly to create a hierarchy of importance on a page.'
146
+ - 'Typography
147
+
148
+ Usage guidelines
149
+
150
+ Don''t use underlines for adding emphasis: Underlines are reserved for text links
151
+ only. They should not be used as a way for adding emphasis to words.
152
+
153
+
154
+ '
155
+ datasets:
156
+ - JianLiao/spectrum-design-docs
157
+ pipeline_tag: sentence-similarity
158
+ library_name: sentence-transformers
159
+ metrics:
160
+ - cosine_accuracy@1
161
+ - cosine_accuracy@3
162
+ - cosine_accuracy@5
163
+ - cosine_accuracy@10
164
+ - cosine_precision@1
165
+ - cosine_precision@3
166
+ - cosine_precision@5
167
+ - cosine_precision@10
168
+ - cosine_recall@1
169
+ - cosine_recall@3
170
+ - cosine_recall@5
171
+ - cosine_recall@10
172
+ - cosine_ndcg@10
173
+ - cosine_mrr@10
174
+ - cosine_map@100
175
+ model-index:
176
+ - name: SentenceTransformer based on BAAI/bge-large-en-v1.5
177
+ results:
178
+ - task:
179
+ type: information-retrieval
180
+ name: Information Retrieval
181
+ dataset:
182
+ name: sds
183
+ type: sds
184
+ metrics:
185
+ - type: cosine_accuracy@1
186
+ value: 0.007462686567164179
187
+ name: Cosine Accuracy@1
188
+ - type: cosine_accuracy@3
189
+ value: 0.015603799185888738
190
+ name: Cosine Accuracy@3
191
+ - type: cosine_accuracy@5
192
+ value: 0.04748982360922659
193
+ name: Cosine Accuracy@5
194
+ - type: cosine_accuracy@10
195
+ value: 0.7815468113975577
196
+ name: Cosine Accuracy@10
197
+ - type: cosine_precision@1
198
+ value: 0.007462686567164179
199
+ name: Cosine Precision@1
200
+ - type: cosine_precision@3
201
+ value: 0.005201266395296246
202
+ name: Cosine Precision@3
203
+ - type: cosine_precision@5
204
+ value: 0.009497964721845319
205
+ name: Cosine Precision@5
206
+ - type: cosine_precision@10
207
+ value: 0.07815468113975575
208
+ name: Cosine Precision@10
209
+ - type: cosine_recall@1
210
+ value: 0.007462686567164179
211
+ name: Cosine Recall@1
212
+ - type: cosine_recall@3
213
+ value: 0.015603799185888738
214
+ name: Cosine Recall@3
215
+ - type: cosine_recall@5
216
+ value: 0.04748982360922659
217
+ name: Cosine Recall@5
218
+ - type: cosine_recall@10
219
+ value: 0.7815468113975577
220
+ name: Cosine Recall@10
221
+ - type: cosine_ndcg@10
222
+ value: 0.25440066233238845
223
+ name: Cosine Ndcg@10
224
+ - type: cosine_mrr@10
225
+ value: 0.10778547737502948
226
+ name: Cosine Mrr@10
227
+ - type: cosine_map@100
228
+ value: 0.11639203259428242
229
+ name: Cosine Map@100
230
+ ---
231
+
232
+ # SentenceTransformer based on BAAI/bge-large-en-v1.5
233
+
234
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
235
+
236
+ ## Model Details
237
+
238
+ ### Model Description
239
+ - **Model Type:** Sentence Transformer
240
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
241
+ - **Maximum Sequence Length:** 512 tokens
242
+ - **Output Dimensionality:** 1024 dimensions
243
+ - **Similarity Function:** Cosine Similarity
244
+ - **Training Dataset:**
245
+ - [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs)
246
+ - **Language:** en
247
+ <!-- - **License:** Unknown -->
248
+
249
+ ### Model Sources
250
+
251
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
252
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
253
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
254
+
255
+ ### Full Model Architecture
256
+
257
+ ```
258
+ SentenceTransformer(
259
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
260
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
261
+ (2): Normalize()
262
+ )
263
+ ```
264
+
265
+ ## Usage
266
+
267
+ ### Direct Usage (Sentence Transformers)
268
+
269
+ First install the Sentence Transformers library:
270
+
271
+ ```bash
272
+ pip install -U sentence-transformers
273
+ ```
274
+
275
+ Then you can load this model and run inference.
276
+ ```python
277
+ from sentence_transformers import SentenceTransformer
278
+
279
+ # Download from the 🤗 Hub
280
+ model = SentenceTransformer("JianLiao/spectrum-doc-fine-tuned")
281
+ # Run inference
282
+ sentences = [
283
+ 'Represent this sentence for searching relevant passages: How can a designer balance the need for clear text links and the need for emphasized text in a user interface?',
284
+ "Typography\nUsage guidelines\nDon't use underlines for adding emphasis: Underlines are reserved for text links only. They should not be used as a way for adding emphasis to words.\n\n",
285
+ 'Meter\nOptions\nPositive variant: The positive variant has a green fill to show the value. This can be used to represent a positive semantic value, such as when there’s a lot of space remaining.',
286
+ ]
287
+ embeddings = model.encode(sentences)
288
+ print(embeddings.shape)
289
+ # [3, 1024]
290
+
291
+ # Get the similarity scores for the embeddings
292
+ similarities = model.similarity(embeddings, embeddings)
293
+ print(similarities.shape)
294
+ # [3, 3]
295
+ ```
296
+
297
+ <!--
298
+ ### Direct Usage (Transformers)
299
+
300
+ <details><summary>Click to see the direct usage in Transformers</summary>
301
+
302
+ </details>
303
+ -->
304
+
305
+ <!--
306
+ ### Downstream Usage (Sentence Transformers)
307
+
308
+ You can finetune this model on your own dataset.
309
+
310
+ <details><summary>Click to expand</summary>
311
+
312
+ </details>
313
+ -->
314
+
315
+ <!--
316
+ ### Out-of-Scope Use
317
+
318
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
319
+ -->
320
+
321
+ ## Evaluation
322
+
323
+ ### Metrics
324
+
325
+ #### Information Retrieval
326
+
327
+ * Dataset: `sds`
328
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
329
+
330
+ | Metric | Value |
331
+ |:--------------------|:-----------|
332
+ | cosine_accuracy@1 | 0.0075 |
333
+ | cosine_accuracy@3 | 0.0156 |
334
+ | cosine_accuracy@5 | 0.0475 |
335
+ | cosine_accuracy@10 | 0.7815 |
336
+ | cosine_precision@1 | 0.0075 |
337
+ | cosine_precision@3 | 0.0052 |
338
+ | cosine_precision@5 | 0.0095 |
339
+ | cosine_precision@10 | 0.0782 |
340
+ | cosine_recall@1 | 0.0075 |
341
+ | cosine_recall@3 | 0.0156 |
342
+ | cosine_recall@5 | 0.0475 |
343
+ | cosine_recall@10 | 0.7815 |
344
+ | **cosine_ndcg@10** | **0.2544** |
345
+ | cosine_mrr@10 | 0.1078 |
346
+ | cosine_map@100 | 0.1164 |
347
+
348
+ <!--
349
+ ## Bias, Risks and Limitations
350
+
351
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
352
+ -->
353
+
354
+ <!--
355
+ ### Recommendations
356
+
357
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
358
+ -->
359
+
360
+ ## Training Details
361
+
362
+ ### Training Dataset
363
+
364
+ #### spectrum-design-docs
365
+
366
+ * Dataset: [spectrum-design-docs](https://huggingface.co/datasets/JianLiao/spectrum-design-docs) at [23f5565](https://huggingface.co/datasets/JianLiao/spectrum-design-docs/tree/23f5565f9fc1cfe31d1245ca9e5368f00fcaec00)
367
+ * Size: 14,737 training samples
368
+ * Columns: <code>anchor</code> and <code>positive</code>
369
+ * Approximate statistics based on the first 1000 samples:
370
+ | | anchor | positive |
371
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
372
+ | type | string | string |
373
+ | details | <ul><li>min: 20 tokens</li><li>mean: 30.87 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 97.17 tokens</li><li>max: 512 tokens</li></ul> |
374
+ * Samples:
375
+ | anchor | positive |
376
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
377
+ | <code>Represent this sentence for searching relevant passages: Are there any specific guidelines or best practices provided by the Spectrum team for integrating Spectrum CSS into a new or existing project?</code> | <code>Spectrum CSS: An open source CSS-only implementation of Spectrum, maintained by the Spectrum team. <br><div class="well-box">Dependency chain: Spectrum DNA → Spectrum CSS</div><br><br>[GitHub repository](https://github.com/adobe/spectrum-css/) <br>[Website](https://opensource.adobe.com/spectrum-css/) <br>[#spectrum_css](https://adobe.slack.com/archives/C5N154FEY)</code> |
378
+ | <code>Represent this sentence for searching relevant passages: How does the default setting for progress circles affect their behavior in a UI?</code> | <code>Progress circle<br>Options<br>Indeterminate: A progress circle can be either determinate or indeterminate. By default, progress circles are determinate. Use a determinate progress circle when progress can be calculated against a specific goal (e.g., downloading a file of a known size). Use an indeterminate progress circle when progress is happening but the time or effort to completion can’t be determined (e.g., attempting to reconnect to a server).</code> |
379
+ | <code>Represent this sentence for searching relevant passages: What tools or methods can designers use to test the effectiveness of wrapped legends in their designs?</code> | <code>Legend<br>Behaviors<br>Wrapping: When there isn’t enough space, wrap legends to ensure that dimension values are shown.</code> |
380
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
381
+ ```json
382
+ {
383
+ "scale": 20.0,
384
+ "similarity_fct": "cos_sim"
385
+ }
386
+ ```
387
+
388
+ ### Training Hyperparameters
389
+ #### Non-Default Hyperparameters
390
+
391
+ - `eval_strategy`: epoch
392
+ - `per_device_train_batch_size`: 22
393
+ - `per_device_eval_batch_size`: 16
394
+ - `gradient_accumulation_steps`: 16
395
+ - `learning_rate`: 2e-05
396
+ - `num_train_epochs`: 100
397
+ - `lr_scheduler_type`: cosine
398
+ - `warmup_ratio`: 0.1
399
+ - `bf16`: True
400
+ - `tf32`: True
401
+ - `load_best_model_at_end`: True
402
+ - `optim`: adamw_torch_fused
403
+ - `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
404
+ - `batch_sampler`: no_duplicates
405
+
406
+ #### All Hyperparameters
407
+ <details><summary>Click to expand</summary>
408
+
409
+ - `overwrite_output_dir`: False
410
+ - `do_predict`: False
411
+ - `eval_strategy`: epoch
412
+ - `prediction_loss_only`: True
413
+ - `per_device_train_batch_size`: 22
414
+ - `per_device_eval_batch_size`: 16
415
+ - `per_gpu_train_batch_size`: None
416
+ - `per_gpu_eval_batch_size`: None
417
+ - `gradient_accumulation_steps`: 16
418
+ - `eval_accumulation_steps`: None
419
+ - `torch_empty_cache_steps`: None
420
+ - `learning_rate`: 2e-05
421
+ - `weight_decay`: 0.0
422
+ - `adam_beta1`: 0.9
423
+ - `adam_beta2`: 0.999
424
+ - `adam_epsilon`: 1e-08
425
+ - `max_grad_norm`: 1.0
426
+ - `num_train_epochs`: 100
427
+ - `max_steps`: -1
428
+ - `lr_scheduler_type`: cosine
429
+ - `lr_scheduler_kwargs`: {}
430
+ - `warmup_ratio`: 0.1
431
+ - `warmup_steps`: 0
432
+ - `log_level`: passive
433
+ - `log_level_replica`: warning
434
+ - `log_on_each_node`: True
435
+ - `logging_nan_inf_filter`: True
436
+ - `save_safetensors`: True
437
+ - `save_on_each_node`: False
438
+ - `save_only_model`: False
439
+ - `restore_callback_states_from_checkpoint`: False
440
+ - `no_cuda`: False
441
+ - `use_cpu`: False
442
+ - `use_mps_device`: False
443
+ - `seed`: 42
444
+ - `data_seed`: None
445
+ - `jit_mode_eval`: False
446
+ - `use_ipex`: False
447
+ - `bf16`: True
448
+ - `fp16`: False
449
+ - `fp16_opt_level`: O1
450
+ - `half_precision_backend`: auto
451
+ - `bf16_full_eval`: False
452
+ - `fp16_full_eval`: False
453
+ - `tf32`: True
454
+ - `local_rank`: 0
455
+ - `ddp_backend`: None
456
+ - `tpu_num_cores`: None
457
+ - `tpu_metrics_debug`: False
458
+ - `debug`: []
459
+ - `dataloader_drop_last`: True
460
+ - `dataloader_num_workers`: 0
461
+ - `dataloader_prefetch_factor`: None
462
+ - `past_index`: -1
463
+ - `disable_tqdm`: False
464
+ - `remove_unused_columns`: True
465
+ - `label_names`: None
466
+ - `load_best_model_at_end`: True
467
+ - `ignore_data_skip`: False
468
+ - `fsdp`: []
469
+ - `fsdp_min_num_params`: 0
470
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
471
+ - `fsdp_transformer_layer_cls_to_wrap`: None
472
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
473
+ - `deepspeed`: None
474
+ - `label_smoothing_factor`: 0.0
475
+ - `optim`: adamw_torch_fused
476
+ - `optim_args`: None
477
+ - `adafactor`: False
478
+ - `group_by_length`: False
479
+ - `length_column_name`: length
480
+ - `ddp_find_unused_parameters`: None
481
+ - `ddp_bucket_cap_mb`: None
482
+ - `ddp_broadcast_buffers`: False
483
+ - `dataloader_pin_memory`: True
484
+ - `dataloader_persistent_workers`: False
485
+ - `skip_memory_metrics`: True
486
+ - `use_legacy_prediction_loop`: False
487
+ - `push_to_hub`: False
488
+ - `resume_from_checkpoint`: None
489
+ - `hub_model_id`: None
490
+ - `hub_strategy`: every_save
491
+ - `hub_private_repo`: None
492
+ - `hub_always_push`: False
493
+ - `gradient_checkpointing`: False
494
+ - `gradient_checkpointing_kwargs`: None
495
+ - `include_inputs_for_metrics`: False
496
+ - `include_for_metrics`: []
497
+ - `eval_do_concat_batches`: True
498
+ - `fp16_backend`: auto
499
+ - `push_to_hub_model_id`: None
500
+ - `push_to_hub_organization`: None
501
+ - `mp_parameters`:
502
+ - `auto_find_batch_size`: False
503
+ - `full_determinism`: False
504
+ - `torchdynamo`: None
505
+ - `ray_scope`: last
506
+ - `ddp_timeout`: 1800
507
+ - `torch_compile`: False
508
+ - `torch_compile_backend`: None
509
+ - `torch_compile_mode`: None
510
+ - `dispatch_batches`: None
511
+ - `split_batches`: None
512
+ - `include_tokens_per_second`: False
513
+ - `include_num_input_tokens_seen`: False
514
+ - `neftune_noise_alpha`: None
515
+ - `optim_target_modules`: None
516
+ - `batch_eval_metrics`: False
517
+ - `eval_on_start`: False
518
+ - `use_liger_kernel`: False
519
+ - `eval_use_gather_object`: False
520
+ - `average_tokens_across_devices`: False
521
+ - `prompts`: {'anchor': 'Represent this sentence for searching relevant passages: '}
522
+ - `batch_sampler`: no_duplicates
523
+ - `multi_dataset_batch_sampler`: proportional
524
+
525
+ </details>
526
+
527
+ ### Training Logs
528
+ <details><summary>Click to expand</summary>
529
+
530
+ | Epoch | Step | Training Loss | sds_cosine_ndcg@10 |
531
+ |:--------:|:-------:|:-------------:|:------------------:|
532
+ | 1.0 | 7 | - | 0.2255 |
533
+ | 1.48 | 10 | 0.2646 | - |
534
+ | 2.0 | 14 | - | 0.2282 |
535
+ | 2.96 | 20 | 0.1412 | - |
536
+ | 3.0 | 21 | - | 0.2358 |
537
+ | 4.0 | 28 | - | 0.2397 |
538
+ | 4.32 | 30 | 0.0638 | - |
539
+ | 5.0 | 35 | - | 0.2430 |
540
+ | 5.8 | 40 | 0.0425 | - |
541
+ | 6.0 | 42 | - | 0.2449 |
542
+ | 7.0 | 49 | - | 0.2462 |
543
+ | 7.16 | 50 | 0.0237 | - |
544
+ | 8.0 | 56 | - | 0.2428 |
545
+ | 8.64 | 60 | 0.015 | - |
546
+ | 9.0 | 63 | - | 0.2456 |
547
+ | 10.0 | 70 | 0.0082 | 0.2456 |
548
+ | 11.0 | 77 | - | 0.2498 |
549
+ | 11.48 | 80 | 0.0052 | - |
550
+ | 12.0 | 84 | - | 0.2474 |
551
+ | 12.96 | 90 | 0.0035 | - |
552
+ | 13.0 | 91 | - | 0.2455 |
553
+ | 14.0 | 98 | - | 0.2475 |
554
+ | 14.32 | 100 | 0.0022 | - |
555
+ | 15.0 | 105 | - | 0.2472 |
556
+ | 15.8 | 110 | 0.002 | - |
557
+ | 16.0 | 112 | - | 0.2486 |
558
+ | 17.0 | 119 | - | 0.2506 |
559
+ | 17.16 | 120 | 0.0015 | - |
560
+ | 18.0 | 126 | - | 0.2490 |
561
+ | 18.64 | 130 | 0.0013 | - |
562
+ | 19.0 | 133 | - | 0.2489 |
563
+ | 20.0 | 140 | 0.0012 | 0.2491 |
564
+ | 21.0 | 147 | - | 0.2493 |
565
+ | 21.48 | 150 | 0.0011 | - |
566
+ | 22.0 | 154 | - | 0.2487 |
567
+ | 22.96 | 160 | 0.001 | - |
568
+ | 23.0 | 161 | - | 0.2486 |
569
+ | 24.0 | 168 | - | 0.2490 |
570
+ | 24.32 | 170 | 0.0008 | - |
571
+ | 25.0 | 175 | - | 0.2502 |
572
+ | 25.8 | 180 | 0.0008 | - |
573
+ | 26.0 | 182 | - | 0.2505 |
574
+ | 27.0 | 189 | - | 0.2523 |
575
+ | 27.16 | 190 | 0.0008 | - |
576
+ | 28.0 | 196 | - | 0.2516 |
577
+ | 28.64 | 200 | 0.0007 | - |
578
+ | 29.0 | 203 | - | 0.2509 |
579
+ | 30.0 | 210 | 0.0007 | 0.2522 |
580
+ | 31.0 | 217 | - | 0.2522 |
581
+ | 31.48 | 220 | 0.0006 | - |
582
+ | 32.0 | 224 | - | 0.2534 |
583
+ | 32.96 | 230 | 0.0007 | - |
584
+ | 33.0 | 231 | - | 0.2523 |
585
+ | 34.0 | 238 | - | 0.2524 |
586
+ | 34.32 | 240 | 0.0006 | - |
587
+ | 35.0 | 245 | - | 0.2518 |
588
+ | 35.8 | 250 | 0.0006 | - |
589
+ | 36.0 | 252 | - | 0.2529 |
590
+ | 37.0 | 259 | - | 0.2524 |
591
+ | 37.16 | 260 | 0.0006 | - |
592
+ | 38.0 | 266 | - | 0.2530 |
593
+ | 38.64 | 270 | 0.0005 | - |
594
+ | 39.0 | 273 | - | 0.2526 |
595
+ | 40.0 | 280 | 0.0006 | 0.2539 |
596
+ | 41.0 | 287 | - | 0.2529 |
597
+ | 41.48 | 290 | 0.0005 | - |
598
+ | 42.0 | 294 | - | 0.2545 |
599
+ | 42.96 | 300 | 0.0006 | - |
600
+ | 43.0 | 301 | - | 0.2534 |
601
+ | 44.0 | 308 | - | 0.2536 |
602
+ | 44.32 | 310 | 0.0004 | - |
603
+ | 45.0 | 315 | - | 0.2521 |
604
+ | 45.8 | 320 | 0.0005 | - |
605
+ | 46.0 | 322 | - | 0.2532 |
606
+ | 47.0 | 329 | - | 0.2519 |
607
+ | 47.16 | 330 | 0.0005 | - |
608
+ | 48.0 | 336 | - | 0.2525 |
609
+ | 48.64 | 340 | 0.0004 | - |
610
+ | 49.0 | 343 | - | 0.2535 |
611
+ | 50.0 | 350 | 0.0005 | 0.2542 |
612
+ | 51.0 | 357 | - | 0.2540 |
613
+ | 51.48 | 360 | 0.0004 | - |
614
+ | 52.0 | 364 | - | 0.2542 |
615
+ | 52.96 | 370 | 0.0005 | - |
616
+ | 53.0 | 371 | - | 0.2538 |
617
+ | 54.0 | 378 | - | 0.2533 |
618
+ | 54.32 | 380 | 0.0004 | - |
619
+ | 55.0 | 385 | - | 0.2544 |
620
+ | 55.8 | 390 | 0.0004 | - |
621
+ | 56.0 | 392 | - | 0.2539 |
622
+ | 57.0 | 399 | - | 0.2541 |
623
+ | 57.16 | 400 | 0.0005 | - |
624
+ | 58.0 | 406 | - | 0.2532 |
625
+ | 58.64 | 410 | 0.0004 | - |
626
+ | 59.0 | 413 | - | 0.2543 |
627
+ | 60.0 | 420 | 0.0004 | 0.2532 |
628
+ | 61.0 | 427 | - | 0.2541 |
629
+ | 61.48 | 430 | 0.0004 | - |
630
+ | 62.0 | 434 | - | 0.2542 |
631
+ | 62.96 | 440 | 0.0005 | - |
632
+ | 63.0 | 441 | - | 0.2546 |
633
+ | 64.0 | 448 | - | 0.2549 |
634
+ | 64.32 | 450 | 0.0003 | - |
635
+ | **65.0** | **455** | **-** | **0.2557** |
636
+ | 65.8 | 460 | 0.0004 | - |
637
+ | 66.0 | 462 | - | 0.2557 |
638
+ | 67.0 | 469 | - | 0.2539 |
639
+ | 67.16 | 470 | 0.0004 | - |
640
+ | 68.0 | 476 | - | 0.2538 |
641
+ | 68.64 | 480 | 0.0004 | - |
642
+ | 69.0 | 483 | - | 0.2538 |
643
+ | 70.0 | 490 | 0.0004 | 0.2542 |
644
+ | 71.0 | 497 | - | 0.2532 |
645
+ | 71.48 | 500 | 0.0004 | - |
646
+ | 72.0 | 504 | - | 0.2538 |
647
+ | 72.96 | 510 | 0.0004 | - |
648
+ | 73.0 | 511 | - | 0.2545 |
649
+ | 74.0 | 518 | - | 0.2531 |
650
+ | 74.32 | 520 | 0.0003 | - |
651
+ | 75.0 | 525 | - | 0.2534 |
652
+ | 75.8 | 530 | 0.0004 | - |
653
+ | 76.0 | 532 | - | 0.2541 |
654
+ | 77.0 | 539 | - | 0.2545 |
655
+ | 77.16 | 540 | 0.0004 | - |
656
+ | 78.0 | 546 | - | 0.2536 |
657
+ | 78.64 | 550 | 0.0004 | - |
658
+ | 79.0 | 553 | - | 0.2545 |
659
+ | 80.0 | 560 | 0.0004 | 0.2540 |
660
+ | 81.0 | 567 | - | 0.2545 |
661
+ | 81.48 | 570 | 0.0004 | - |
662
+ | 82.0 | 574 | - | 0.2541 |
663
+ | 82.96 | 580 | 0.0004 | - |
664
+ | 83.0 | 581 | - | 0.2545 |
665
+ | 84.0 | 588 | - | 0.2538 |
666
+ | 84.32 | 590 | 0.0004 | - |
667
+ | 85.0 | 595 | - | 0.2546 |
668
+ | 85.8 | 600 | 0.0004 | 0.2544 |
669
+
670
+ * The bold row denotes the saved checkpoint.
671
+ </details>
672
+
673
+ ### Framework Versions
674
+ - Python: 3.12.8
675
+ - Sentence Transformers: 3.3.1
676
+ - Transformers: 4.47.1
677
+ - PyTorch: 2.5.1+cu124
678
+ - Accelerate: 1.2.1
679
+ - Datasets: 3.2.0
680
+ - Tokenizers: 0.21.0
681
+
682
+ ## Citation
683
+
684
+ ### BibTeX
685
+
686
+ #### Sentence Transformers
687
+ ```bibtex
688
+ @inproceedings{reimers-2019-sentence-bert,
689
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
690
+ author = "Reimers, Nils and Gurevych, Iryna",
691
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
692
+ month = "11",
693
+ year = "2019",
694
+ publisher = "Association for Computational Linguistics",
695
+ url = "https://arxiv.org/abs/1908.10084",
696
+ }
697
+ ```
698
+
699
+ #### MultipleNegativesRankingLoss
700
+ ```bibtex
701
+ @misc{henderson2017efficient,
702
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
703
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
704
+ year={2017},
705
+ eprint={1705.00652},
706
+ archivePrefix={arXiv},
707
+ primaryClass={cs.CL}
708
+ }
709
+ ```
710
+
711
+ <!--
712
+ ## Glossary
713
+
714
+ *Clearly define terms in order to be accessible across audiences.*
715
+ -->
716
+
717
+ <!--
718
+ ## Model Card Authors
719
+
720
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
721
+ -->
722
+
723
+ <!--
724
+ ## Model Card Contact
725
+
726
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
727
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./ft-v3.0.0",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.47.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {
8
+ "anchor": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e7b0abdb38881b87c3e79e4d866887ef4cc01a9ce4faccc124b1b2cedbaf3d
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff