Jnjnpx's picture
Update README.md
96d38b7 verified
metadata
license: apache-2.0
base_model: Twitter/twhin-bert-base
tags:
  - text-classification
  - generated_from_trainer
  - lao-extractive-summarization
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: fine-tuned-bert-extractive-summarization
    results: []
language:
  - lo

fine-tuned-bert-extractive-summarization

This model is a fine-tuned version of Twitter/twhin-bert-base on the LaoNews dataset for Lao text extractive summarization. It achieves the following results on the evaluation set:

  • Loss: 0.5566
  • Accuracy: 0.6995
  • Precision: 0.6947
  • Recall: 0.6995
  • F1: 0.6961

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5748 1.0 7107 0.5609 0.6916 0.6858 0.6916 0.6873
0.5552 2.0 14215 0.5659 0.6839 0.6931 0.6839 0.6870
0.5364 3.0 21321 0.5566 0.6995 0.6947 0.6995 0.6961

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2