llama381binstruct_summarize_short

This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3454

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 30
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
1.9049 1.1905 25 1.3198
0.8341 2.3810 50 1.3278
0.4251 3.5714 75 1.4843
0.1704 4.7619 100 1.6038
0.0957 5.9524 125 1.8290
0.0481 7.1429 150 2.0425
0.0378 8.3333 175 1.9429
0.0143 9.5238 200 2.2196
0.012 10.7143 225 2.1719
0.013 11.9048 250 2.1323
0.0069 13.0952 275 2.1442
0.0043 14.2857 300 2.1642
0.0033 15.4762 325 2.2483
0.0029 16.6667 350 2.2829
0.0024 17.8571 375 2.2906
0.0027 19.0476 400 2.3140
0.0023 20.2381 425 2.3269
0.0019 21.4286 450 2.3399
0.0021 22.6190 475 2.3443
0.0022 23.8095 500 2.3454

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for JoeNoss1998/llama381binstruct_summarize_short

Adapter
(69)
this model