language: en | |
widget: | |
- text: "I got a rash from taking acetaminophen" | |
tags: | |
- sagemaker | |
- bert-base-uncased | |
- text classification | |
license: apache-2.0 | |
datasets: | |
- adecorpusv2 | |
model-index: | |
- name: BERT-ade_corpus | |
results: | |
- task: | |
name: Text Classification | |
type: text-classification | |
dataset: | |
name: "ade_corpus_v2Ade_corpus_v2_classification" | |
type: ade_corpus | |
metrics: | |
- name: Validation Accuracy | |
type: accuracy | |
value: 92.98 | |
- name: Validation F1 | |
type: f1 | |
value: 82.73 | |
## bert-base-uncased | |
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. | |
- Problem type: Text Classification(adverse drug effects detection). | |
## Hyperparameters | |
```json | |
{ | |
"do_eval": true, | |
"do_train": true, | |
"fp16": true, | |
"load_best_model_at_end": true, | |
"model_name": "bert-base-uncased", | |
"num_train_epochs": 10, | |
"per_device_eval_batch_size": 16, | |
"per_device_train_batch_size": 16, | |
"learning_rate":5e-5 | |
} | |
``` | |
## Validation Metrics | |
| key | value | | |
| --- | ----- | | |
| eval_accuracy | 0.9298021697511167 | | |
| eval_auc | 0.8902672664394546 | | |
| eval_f1 | 0.827315541601256 | | |
| eval_loss | 0.17835010588169098 | | |
| eval_recall | 0.8234375 | | |
| eval_precision | 0.831230283911672 | | |
## Usage | |
You can use cURL to access this model: | |
``` | |
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I got a rash from taking acetaminophen"}' https://api-inference.huggingface.co/models/Jorgeutd/bert-base-uncased-ade-Ade-corpus-v2 | |
``` | |
""" |