Edit model card

NLP-reviews

This model is a fine-tuned version of bert-base-uncased on the Sentiment Labelled Sentences Data Set.

Model description

Given a sentence, this model will return the probabilities of it having a positive or negative sentiment, and the probabilities that it would be a review you would find from amazon.com, imdb.com, or yelp.com.

It is a multi-label classification model which is able to determine both the sentiment of text and a grouping the text belongs to.

Training and evaluation data

The data is obtained from the procured Sentiment Labelled Sentences Data Set.

Each entry has a sentiment score: 1 for positive or 0 for negative.

The data comes from one of three different websites:

  • amazon.com
  • imdb.com
  • yelp.com

There are 500 positive and 500 negative sentences from each website, selected randomly from a larger dataset of reviews, and were chosen based on having clear positive or negative connotation.

This was split into a 90-10 train-test split for model training and evaluation.

The code used to train the model is at https://github.com/josephtkim/huggingface-sentiment-analysis.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 338 0.2270
0.2235 2.0 676 0.2737
0.0644 3.0 1014 0.3171
0.0644 4.0 1352 0.3511
0.0193 5.0 1690 0.3726
0.0119 6.0 2028 0.3638
0.0119 7.0 2366 0.3337
0.0043 8.0 2704 0.3424
0.0019 9.0 3042 0.3387
0.0019 10.0 3380 0.3467

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using JosephTK/NLP-reviews 1