model_broadclass_onSet1

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9014
  • 0 Precision: 0.5217
  • 0 Recall: 1.0
  • 0 F1-score: 0.6857
  • 0 Support: 24
  • 1 Precision: 1.0
  • 1 Recall: 0.7692
  • 1 F1-score: 0.8696
  • 1 Support: 39
  • 2 Precision: 1.0
  • 2 Recall: 0.5652
  • 2 F1-score: 0.7222
  • 2 Support: 23
  • 3 Precision: 1.0
  • 3 Recall: 0.75
  • 3 F1-score: 0.8571
  • 3 Support: 12
  • Accuracy: 0.7755
  • Macro avg Precision: 0.8804
  • Macro avg Recall: 0.7711
  • Macro avg F1-score: 0.7837
  • Macro avg Support: 98
  • Weighted avg Precision: 0.8829
  • Weighted avg Recall: 0.7755
  • Weighted avg F1-score: 0.7884
  • Weighted avg Support: 98
  • Wer: 0.9368
  • Mtrix: [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 9, 30, 0, 0], [2, 10, 0, 13, 0], [3, 3, 0, 0, 9]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 70
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support 2 Precision 2 Recall 2 F1-score 2 Support 3 Precision 3 Recall 3 F1-score 3 Support Accuracy Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Wer Mtrix
2.395 4.16 100 2.2004 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
2.2919 8.33 200 2.1576 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
2.0987 12.49 300 2.0882 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.9079 16.65 400 1.8619 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.7168 20.82 500 1.6469 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.551 24.98 600 1.6614 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.6399 29.16 700 1.5818 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.3329 33.33 800 1.2267 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.1996 37.49 900 1.2143 0.2449 1.0 0.3934 24 0.0 0.0 0.0 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2449 0.0612 0.25 0.0984 98 0.0600 0.2449 0.0964 98 0.9879 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 39, 0, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
1.01 41.65 1000 0.9496 0.2474 1.0 0.3967 24 1.0 0.0256 0.05 39 0.0 0.0 0.0 23 0.0 0.0 0.0 12 0.2551 0.3119 0.2564 0.1117 98 0.4586 0.2551 0.1170 98 0.9777 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 38, 1, 0, 0], [2, 23, 0, 0, 0], [3, 12, 0, 0, 0]]
0.9516 45.82 1100 0.9471 0.2927 1.0 0.4528 24 1.0 0.3846 0.5556 39 1.0 0.0435 0.0833 23 0.0 0.0 0.0 12 0.4082 0.5732 0.3570 0.2729 98 0.7043 0.4082 0.3515 98 0.9661 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 24, 15, 0, 0], [2, 22, 0, 1, 0], [3, 12, 0, 0, 0]]
0.9544 49.98 1200 0.9452 0.3582 1.0 0.5275 24 1.0 0.5128 0.6780 39 1.0 0.3043 0.4667 23 0.75 0.25 0.375 12 0.5510 0.7771 0.5168 0.5118 98 0.8122 0.5510 0.5544 98 0.9540 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 18, 20, 0, 1], [2, 16, 0, 7, 0], [3, 9, 0, 0, 3]]
0.9538 54.16 1300 0.9259 0.4615 1.0 0.6316 24 1.0 0.6923 0.8182 39 1.0 0.5217 0.6857 23 0.8571 0.5 0.6316 12 0.7041 0.8297 0.6785 0.6918 98 0.8506 0.7041 0.7185 98 0.9439 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 11, 27, 0, 1], [2, 11, 0, 12, 0], [3, 6, 0, 0, 6]]
0.952 58.33 1400 0.9052 0.4528 1.0 0.6234 24 1.0 0.6667 0.8 39 1.0 0.4348 0.6061 23 0.8889 0.6667 0.7619 12 0.6939 0.8354 0.6920 0.6978 98 0.8524 0.6939 0.7066 98 0.9464 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 12, 26, 0, 1], [2, 13, 0, 10, 0], [3, 4, 0, 0, 8]]
0.8938 62.49 1500 0.9070 0.48 1.0 0.6486 24 0.9677 0.7692 0.8571 39 1.0 0.4348 0.6061 23 1.0 0.5833 0.7368 12 0.7245 0.8619 0.6968 0.7122 98 0.8598 0.7245 0.7324 98 0.9398 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 9, 30, 0, 0], [2, 12, 1, 10, 0], [3, 5, 0, 0, 7]]
0.9027 66.65 1600 0.8919 0.5714 1.0 0.7273 24 1.0 0.8462 0.9167 39 1.0 0.7391 0.85 23 1.0 0.5 0.6667 12 0.8163 0.8929 0.7713 0.7902 98 0.8950 0.8163 0.8240 98 0.9398 [[0, 1, 2, 3], [0, 24, 0, 0, 0], [1, 6, 33, 0, 0], [2, 6, 0, 17, 0], [3, 6, 0, 0, 6]]

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.