model_broadclass_onSet2.1

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1459
  • 0 Precision: 0.9630
  • 0 Recall: 1.0
  • 0 F1-score: 0.9811
  • 0 Support: 26
  • 1 Precision: 1.0
  • 1 Recall: 0.9231
  • 1 F1-score: 0.9600
  • 1 Support: 39
  • 2 Precision: 1.0
  • 2 Recall: 1.0
  • 2 F1-score: 1.0
  • 2 Support: 19
  • 3 Precision: 0.8667
  • 3 Recall: 1.0
  • 3 F1-score: 0.9286
  • 3 Support: 13
  • Accuracy: 0.9691
  • Macro avg Precision: 0.9574
  • Macro avg Recall: 0.9808
  • Macro avg F1-score: 0.9674
  • Macro avg Support: 97
  • Weighted avg Precision: 0.9722
  • Weighted avg Recall: 0.9691
  • Weighted avg F1-score: 0.9693
  • Weighted avg Support: 97
  • Wer: 0.1293
  • Mtrix: [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 80
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss 0 Precision 0 Recall 0 F1-score 0 Support 1 Precision 1 Recall 1 F1-score 1 Support 2 Precision 2 Recall 2 F1-score 2 Support 3 Precision 3 Recall 3 F1-score 3 Support Accuracy Macro avg Precision Macro avg Recall Macro avg F1-score Macro avg Support Weighted avg Precision Weighted avg Recall Weighted avg F1-score Weighted avg Support Wer Mtrix
2.3399 4.16 100 2.1769 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
2.3152 8.33 200 2.1458 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.9859 12.49 300 1.9172 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.7126 16.65 400 1.6954 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.6833 20.82 500 1.7553 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5318 24.98 600 1.5921 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5868 29.16 700 1.5517 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.5577 33.33 800 1.5089 0.2680 1.0 0.4228 26 0.0 0.0 0.0 39 0.0 0.0 0.0 19 0.0 0.0 0.0 13 0.2680 0.0670 0.25 0.1057 97 0.0718 0.2680 0.1133 97 0.9869 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]
1.2201 37.49 900 1.1567 0.4643 1.0 0.6341 26 1.0 0.4872 0.6552 39 1.0 0.5263 0.6897 19 1.0 0.9231 0.9600 13 0.6907 0.8661 0.7341 0.7347 97 0.8564 0.6907 0.6971 97 0.9485 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 20, 19, 0, 0], [2, 9, 0, 10, 0], [3, 1, 0, 0, 12]]
0.9692 41.65 1000 1.0489 0.5102 0.9615 0.6667 26 0.9615 0.6410 0.7692 39 0.9167 0.5789 0.7097 19 1.0 0.7692 0.8696 13 0.7320 0.8471 0.7377 0.7538 97 0.8369 0.7320 0.7435 97 0.9374 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 13, 25, 1, 0], [2, 8, 0, 11, 0], [3, 3, 0, 0, 10]]
0.9214 45.82 1100 0.9620 0.9615 0.9615 0.9615 26 0.9730 0.9231 0.9474 39 0.9048 1.0 0.9500 19 1.0 1.0 1.0 13 0.9588 0.9598 0.9712 0.9647 97 0.9602 0.9588 0.9587 97 0.9328 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 2, 0], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.9305 49.98 1200 0.9736 0.8125 1.0 0.8966 26 1.0 0.8205 0.9014 39 0.9048 1.0 0.9500 19 1.0 0.9231 0.9600 13 0.9175 0.9293 0.9359 0.9270 97 0.9311 0.9175 0.9175 97 0.9253 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 5, 32, 2, 0], [2, 0, 0, 19, 0], [3, 1, 0, 0, 12]]
0.8982 54.16 1300 0.9586 0.7812 0.9615 0.8621 26 0.9688 0.7949 0.8732 39 0.9 0.9474 0.9231 19 1.0 1.0 1.0 13 0.8969 0.9125 0.9259 0.9146 97 0.9092 0.8969 0.8970 97 0.9283 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 6, 31, 2, 0], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]
0.8382 58.33 1400 0.8864 0.9615 0.9615 0.9615 26 0.9722 0.8974 0.9333 39 0.95 1.0 0.9744 19 0.8667 1.0 0.9286 13 0.9485 0.9376 0.9647 0.9495 97 0.9509 0.9485 0.9483 97 0.8904 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 35, 1, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.7314 62.49 1500 0.7880 0.96 0.9231 0.9412 26 0.9474 0.9231 0.9351 39 0.95 1.0 0.9744 19 0.9286 1.0 0.9630 13 0.9485 0.9465 0.9615 0.9534 97 0.9488 0.9485 0.9481 97 0.8020 [[0, 1, 2, 3], [0, 24, 2, 0, 0], [1, 1, 36, 1, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.448 66.65 1600 0.3458 0.9615 0.9615 0.9615 26 0.9730 0.9231 0.9474 39 1.0 1.0 1.0 19 0.8667 1.0 0.9286 13 0.9588 0.9503 0.9712 0.9594 97 0.9610 0.9588 0.9590 97 0.2561 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.1921 70.82 1700 0.1970 0.9615 0.9615 0.9615 26 0.9730 0.9231 0.9474 39 1.0 1.0 1.0 19 0.8667 1.0 0.9286 13 0.9588 0.9503 0.9712 0.9594 97 0.9610 0.9588 0.9590 97 0.1581 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.1499 74.98 1800 0.1463 0.9615 0.9615 0.9615 26 0.9730 0.9231 0.9474 39 1.0 1.0 1.0 19 0.8667 1.0 0.9286 13 0.9588 0.9503 0.9712 0.9594 97 0.9610 0.9588 0.9590 97 0.1384 [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]
0.1099 79.16 1900 0.1459 0.9630 1.0 0.9811 26 1.0 0.9231 0.9600 39 1.0 1.0 1.0 19 0.8667 1.0 0.9286 13 0.9691 0.9574 0.9808 0.9674 97 0.9722 0.9691 0.9693 97 0.1293 [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.