File size: 13,237 Bytes
d246050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_broadclass_onSet2.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model_broadclass_onSet2.1

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1459
- 0 Precision: 0.9630
- 0 Recall: 1.0
- 0 F1-score: 0.9811
- 0 Support: 26
- 1 Precision: 1.0
- 1 Recall: 0.9231
- 1 F1-score: 0.9600
- 1 Support: 39
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 19
- 3 Precision: 0.8667
- 3 Recall: 1.0
- 3 F1-score: 0.9286
- 3 Support: 13
- Accuracy: 0.9691
- Macro avg Precision: 0.9574
- Macro avg Recall: 0.9808
- Macro avg F1-score: 0.9674
- Macro avg Support: 97
- Weighted avg Precision: 0.9722
- Weighted avg Recall: 0.9691
- Weighted avg F1-score: 0.9693
- Weighted avg Support: 97
- Wer: 0.1293
- Mtrix: [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 80
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer    | Mtrix                                                                                   |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
| 2.3399        | 4.16  | 100  | 2.1769          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 2.3152        | 8.33  | 200  | 2.1458          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.9859        | 12.49 | 300  | 1.9172          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.7126        | 16.65 | 400  | 1.6954          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.6833        | 20.82 | 500  | 1.7553          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5318        | 24.98 | 600  | 1.5921          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5868        | 29.16 | 700  | 1.5517          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5577        | 33.33 | 800  | 1.5089          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.2201        | 37.49 | 900  | 1.1567          | 0.4643      | 1.0      | 0.6341     | 26        | 1.0         | 0.4872   | 0.6552     | 39        | 1.0         | 0.5263   | 0.6897     | 19        | 1.0         | 0.9231   | 0.9600     | 13        | 0.6907   | 0.8661              | 0.7341           | 0.7347             | 97                | 0.8564                 | 0.6907              | 0.6971                | 97                   | 0.9485 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 20, 19, 0, 0], [2, 9, 0, 10, 0], [3, 1, 0, 0, 12]] |
| 0.9692        | 41.65 | 1000 | 1.0489          | 0.5102      | 0.9615   | 0.6667     | 26        | 0.9615      | 0.6410   | 0.7692     | 39        | 0.9167      | 0.5789   | 0.7097     | 19        | 1.0         | 0.7692   | 0.8696     | 13        | 0.7320   | 0.8471              | 0.7377           | 0.7538             | 97                | 0.8369                 | 0.7320              | 0.7435                | 97                   | 0.9374 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 13, 25, 1, 0], [2, 8, 0, 11, 0], [3, 3, 0, 0, 10]] |
| 0.9214        | 45.82 | 1100 | 0.9620          | 0.9615      | 0.9615   | 0.9615     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 0.9048      | 1.0      | 0.9500     | 19        | 1.0         | 1.0      | 1.0        | 13        | 0.9588   | 0.9598              | 0.9712           | 0.9647             | 97                | 0.9602                 | 0.9588              | 0.9587                | 97                   | 0.9328 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 2, 0], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.9305        | 49.98 | 1200 | 0.9736          | 0.8125      | 1.0      | 0.8966     | 26        | 1.0         | 0.8205   | 0.9014     | 39        | 0.9048      | 1.0      | 0.9500     | 19        | 1.0         | 0.9231   | 0.9600     | 13        | 0.9175   | 0.9293              | 0.9359           | 0.9270             | 97                | 0.9311                 | 0.9175              | 0.9175                | 97                   | 0.9253 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 5, 32, 2, 0], [2, 0, 0, 19, 0], [3, 1, 0, 0, 12]]  |
| 0.8982        | 54.16 | 1300 | 0.9586          | 0.7812      | 0.9615   | 0.8621     | 26        | 0.9688      | 0.7949   | 0.8732     | 39        | 0.9         | 0.9474   | 0.9231     | 19        | 1.0         | 1.0      | 1.0        | 13        | 0.8969   | 0.9125              | 0.9259           | 0.9146             | 97                | 0.9092                 | 0.8969              | 0.8970                | 97                   | 0.9283 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 6, 31, 2, 0], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]  |
| 0.8382        | 58.33 | 1400 | 0.8864          | 0.9615      | 0.9615   | 0.9615     | 26        | 0.9722      | 0.8974   | 0.9333     | 39        | 0.95        | 1.0      | 0.9744     | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9485   | 0.9376              | 0.9647           | 0.9495             | 97                | 0.9509                 | 0.9485              | 0.9483                | 97                   | 0.8904 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 35, 1, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.7314        | 62.49 | 1500 | 0.7880          | 0.96        | 0.9231   | 0.9412     | 26        | 0.9474      | 0.9231   | 0.9351     | 39        | 0.95        | 1.0      | 0.9744     | 19        | 0.9286      | 1.0      | 0.9630     | 13        | 0.9485   | 0.9465              | 0.9615           | 0.9534             | 97                | 0.9488                 | 0.9485              | 0.9481                | 97                   | 0.8020 | [[0, 1, 2, 3], [0, 24, 2, 0, 0], [1, 1, 36, 1, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.448         | 66.65 | 1600 | 0.3458          | 0.9615      | 0.9615   | 0.9615     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9588   | 0.9503              | 0.9712           | 0.9594             | 97                | 0.9610                 | 0.9588              | 0.9590                | 97                   | 0.2561 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.1921        | 70.82 | 1700 | 0.1970          | 0.9615      | 0.9615   | 0.9615     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9588   | 0.9503              | 0.9712           | 0.9594             | 97                | 0.9610                 | 0.9588              | 0.9590                | 97                   | 0.1581 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.1499        | 74.98 | 1800 | 0.1463          | 0.9615      | 0.9615   | 0.9615     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9588   | 0.9503              | 0.9712           | 0.9594             | 97                | 0.9610                 | 0.9588              | 0.9590                | 97                   | 0.1384 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.1099        | 79.16 | 1900 | 0.1459          | 0.9630      | 1.0      | 0.9811     | 26        | 1.0         | 0.9231   | 0.9600     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9691   | 0.9574              | 0.9808           | 0.9674             | 97                | 0.9722                 | 0.9691              | 0.9693                | 97                   | 0.1293 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 1, 36, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2