File size: 13,236 Bytes
3fb0d79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- wer
model-index:
- name: model_broadclass_onSet2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model_broadclass_onSet2

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5931
- 0 Precision: 1.0
- 0 Recall: 0.9615
- 0 F1-score: 0.9804
- 0 Support: 26
- 1 Precision: 0.9730
- 1 Recall: 0.9231
- 1 F1-score: 0.9474
- 1 Support: 39
- 2 Precision: 1.0
- 2 Recall: 1.0
- 2 F1-score: 1.0
- 2 Support: 19
- 3 Precision: 0.8125
- 3 Recall: 1.0
- 3 F1-score: 0.8966
- 3 Support: 13
- Accuracy: 0.9588
- Macro avg Precision: 0.9464
- Macro avg Recall: 0.9712
- Macro avg F1-score: 0.9561
- Macro avg Support: 97
- Weighted avg Precision: 0.9640
- Weighted avg Recall: 0.9588
- Weighted avg F1-score: 0.9597
- Weighted avg Support: 97
- Wer: 0.6924
- Mtrix: [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 80
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | 0 Precision | 0 Recall | 0 F1-score | 0 Support | 1 Precision | 1 Recall | 1 F1-score | 1 Support | 2 Precision | 2 Recall | 2 F1-score | 2 Support | 3 Precision | 3 Recall | 3 F1-score | 3 Support | Accuracy | Macro avg Precision | Macro avg Recall | Macro avg F1-score | Macro avg Support | Weighted avg Precision | Weighted avg Recall | Weighted avg F1-score | Weighted avg Support | Wer    | Mtrix                                                                                   |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:-----------:|:--------:|:----------:|:---------:|:--------:|:-------------------:|:----------------:|:------------------:|:-----------------:|:----------------------:|:-------------------:|:---------------------:|:--------------------:|:------:|:---------------------------------------------------------------------------------------:|
| 2.3566        | 4.16  | 100  | 2.1836          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 2.2923        | 8.33  | 200  | 2.1159          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.9868        | 12.49 | 300  | 1.9923          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.7313        | 16.65 | 400  | 1.6081          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.6688        | 20.82 | 500  | 1.5971          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5888        | 24.98 | 600  | 1.6098          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5986        | 29.16 | 700  | 1.6984          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.5437        | 33.33 | 800  | 1.4933          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 1.1358        | 37.49 | 900  | 1.1118          | 0.2680      | 1.0      | 0.4228     | 26        | 0.0         | 0.0      | 0.0        | 39        | 0.0         | 0.0      | 0.0        | 19        | 0.0         | 0.0      | 0.0        | 13        | 0.2680   | 0.0670              | 0.25             | 0.1057             | 97                | 0.0718                 | 0.2680              | 0.1133                | 97                   | 0.9869 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 39, 0, 0, 0], [2, 19, 0, 0, 0], [3, 13, 0, 0, 0]]  |
| 0.983         | 41.65 | 1000 | 1.0538          | 0.3171      | 1.0      | 0.4815     | 26        | 1.0         | 0.0256   | 0.05       | 39        | 1.0         | 0.3158   | 0.4800     | 19        | 0.875       | 0.5385   | 0.6667     | 13        | 0.4124   | 0.7980              | 0.4700           | 0.4195             | 97                | 0.8002                 | 0.4124              | 0.3325                | 97                   | 0.9732 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 37, 1, 0, 1], [2, 13, 0, 6, 0], [3, 6, 0, 0, 7]]   |
| 0.96          | 45.82 | 1100 | 0.9324          | 0.4561      | 1.0      | 0.6265     | 26        | 1.0         | 0.3846   | 0.5556     | 39        | 1.0         | 0.6316   | 0.7742     | 19        | 1.0         | 1.0      | 1.0        | 13        | 0.6804   | 0.8640              | 0.7540           | 0.7391             | 97                | 0.8542                 | 0.6804              | 0.6770                | 97                   | 0.9510 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 24, 15, 0, 0], [2, 7, 0, 12, 0], [3, 0, 0, 0, 13]] |
| 0.9569        | 49.98 | 1200 | 0.9106          | 0.52        | 1.0      | 0.6842     | 26        | 1.0         | 0.6410   | 0.7813     | 39        | 1.0         | 0.6316   | 0.7742     | 19        | 1.0         | 0.7692   | 0.8696     | 13        | 0.7526   | 0.88                | 0.7605           | 0.7773             | 97                | 0.8713                 | 0.7526              | 0.7657                | 97                   | 0.9343 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 14, 25, 0, 0], [2, 7, 0, 12, 0], [3, 3, 0, 0, 10]] |
| 0.943         | 54.16 | 1300 | 0.9142          | 0.7879      | 1.0      | 0.8814     | 26        | 1.0         | 0.8205   | 0.9014     | 39        | 1.0         | 0.9474   | 0.9730     | 19        | 0.9286      | 1.0      | 0.9630     | 13        | 0.9175   | 0.9291              | 0.9420           | 0.9297             | 97                | 0.9336                 | 0.9175              | 0.9183                | 97                   | 0.9242 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 6, 32, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]  |
| 0.9177        | 58.33 | 1400 | 0.9201          | 0.7879      | 1.0      | 0.8814     | 26        | 1.0         | 0.7692   | 0.8696     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8667      | 1.0      | 0.9286     | 13        | 0.9072   | 0.9136              | 0.9423           | 0.9199             | 97                | 0.9253                 | 0.9072              | 0.9062                | 97                   | 0.9197 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 7, 30, 0, 2], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.873         | 62.49 | 1500 | 0.8556          | 0.8387      | 1.0      | 0.9123     | 26        | 1.0         | 0.8718   | 0.9315     | 39        | 1.0         | 0.9474   | 0.9730     | 19        | 0.9286      | 1.0      | 0.9630     | 13        | 0.9381   | 0.9418              | 0.9548           | 0.9449             | 97                | 0.9472                 | 0.9381              | 0.9387                | 97                   | 0.9293 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 4, 34, 0, 1], [2, 1, 0, 18, 0], [3, 0, 0, 0, 13]]  |
| 0.798         | 66.65 | 1600 | 0.8133          | 0.8966      | 1.0      | 0.9455     | 26        | 1.0         | 0.8974   | 0.9459     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.9286      | 1.0      | 0.9630     | 13        | 0.9588   | 0.9563              | 0.9744           | 0.9636             | 97                | 0.9627                 | 0.9588              | 0.9587                | 97                   | 0.9071 | [[0, 1, 2, 3], [0, 26, 0, 0, 0], [1, 3, 35, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.7299        | 70.82 | 1700 | 0.7332          | 1.0         | 0.9615   | 0.9804     | 26        | 0.9744      | 0.9744   | 0.9744     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.9286      | 1.0      | 0.9630     | 13        | 0.9794   | 0.9757              | 0.9840           | 0.9794             | 97                | 0.9801                 | 0.9794              | 0.9795                | 97                   | 0.8636 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 38, 0, 1], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.6432        | 74.98 | 1800 | 0.6808          | 1.0         | 0.9615   | 0.9804     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8125      | 1.0      | 0.8966     | 13        | 0.9588   | 0.9464              | 0.9712           | 0.9561             | 97                | 0.9640                 | 0.9588              | 0.9597                | 97                   | 0.7758 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |
| 0.6067        | 79.16 | 1900 | 0.5931          | 1.0         | 0.9615   | 0.9804     | 26        | 0.9730      | 0.9231   | 0.9474     | 39        | 1.0         | 1.0      | 1.0        | 19        | 0.8125      | 1.0      | 0.8966     | 13        | 0.9588   | 0.9464              | 0.9712           | 0.9561             | 97                | 0.9640                 | 0.9588              | 0.9597                | 97                   | 0.6924 | [[0, 1, 2, 3], [0, 25, 1, 0, 0], [1, 0, 36, 0, 3], [2, 0, 0, 19, 0], [3, 0, 0, 0, 13]]  |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2