JuanjoLopez19's picture
Training with 90/10 Spanish dataset, 50 epochs, 3 Batch Size, reduce_lr_on_plateau
c89cd67 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
  - name: Mistral-7B-Instruct-v0.2-finetune-SWE_90_10
    results: []

Mistral-7B-Instruct-v0.2-finetune-SWE_90_10

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: reduce_lr_on_plateau
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.4991 0.9992 1231 1.7493
1.5973 1.9984 2462 1.5530
0.7761 2.9976 3693 1.6627
0.4026 3.9968 4924 1.9381
0.3181 4.9959 6155 2.1410
0.2572 5.9951 7386 2.3047
0.2783 6.9943 8617 2.4170
0.1911 7.9935 9848 2.5913
0.2101 8.9927 11079 2.5669
0.1934 9.9919 12310 2.5707
0.1641 10.9911 13541 2.5205
0.1534 11.9903 14772 2.6706
0.1887 12.9894 16003 2.7875
0.1146 13.9886 17234 2.9092
0.0891 14.9878 18465 3.2176
0.0845 15.9870 19696 3.3288
0.0901 16.9862 20927 3.4202
0.0805 17.9854 22158 3.4854
0.0768 18.9846 23389 3.4997
0.0788 19.9838 24620 3.5510
0.0829 20.9830 25851 3.5782
0.0729 21.9821 27082 3.5944
0.0747 22.9813 28313 3.6143
0.0767 23.9805 29544 3.6171
0.0655 24.9797 30775 3.6633
0.0695 25.9789 32006 3.6780
0.0632 26.9781 33237 3.6896
0.0628 27.9773 34468 3.6971
0.0626 28.9765 35699 3.7027
0.0601 29.9756 36930 3.7070
0.0576 30.9748 38161 3.7114
0.1134 31.9740 39392 3.7157
0.1046 32.9732 40623 3.7186
0.1019 33.9724 41854 3.7199
0.0935 34.9716 43085 3.7234
0.0911 35.9708 44316 3.7252
0.0899 36.9700 45547 3.7271
0.0919 37.9692 46778 3.7285
0.0823 38.9683 48009 3.7299
0.0871 39.9675 49240 3.7312
0.0824 40.9667 50471 3.7322
0.0812 41.9659 51702 3.7332
0.0813 42.9651 52933 3.7342
0.0802 43.9643 54164 3.7350
0.0809 44.9635 55395 3.7359
0.0782 45.9627 56626 3.7368
0.0765 46.9619 57857 3.7369
0.0787 47.9610 59088 3.7370
0.076 48.9602 60319 3.7370
0.0756 49.9594 61550 3.7372

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1