You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.75551694767912
  • mse: 0.06038101818653434
  • mae: 0.12572727079081708
  • rmse: 0.24572549356250023
  • rmsle: 0.1700195996741877
  • loss: 0.24572549356250023

Best Params

  • learning_rate: 0.19966547950225813
  • reg_lambda: 1.1910980465515898e-05
  • reg_alpha: 0.003345407176272181
  • subsample: 0.5134686751829827
  • colsample_bytree: 0.7469701482100698
  • max_depth: 7
  • early_stopping_rounds: 407
  • n_estimators: 15000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train JuliaDubov/churn111