Whisper tiny FTSpeech - Julie
This model is a fine-tuned version of openai/whisper-tiny on the ftspeech dataset. It achieves the following results on the evaluation set:
- Loss: 0.6006
- Wer: 97.1761
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.9429 | 0.0080 | 500 | 0.9411 | 87.9967 |
0.7782 | 0.0161 | 1000 | 0.7891 | 91.5049 |
0.7176 | 0.0241 | 1500 | 0.7164 | 89.9351 |
0.6545 | 0.0321 | 2000 | 0.6686 | 85.8745 |
0.6171 | 0.0402 | 2500 | 0.6395 | 91.9062 |
0.5767 | 0.0482 | 3000 | 0.6176 | 94.2052 |
0.546 | 0.0562 | 3500 | 0.6006 | 97.1761 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 85
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for JulieHinge/whisper-medium-ftspeech
Base model
openai/whisper-tiny