JustAFool's picture
End of training
4f71cf3 verified
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-vi-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: vi
          split: test
          args: vi
        metrics:
          - name: Wer
            type: wer
            value: 0.6686410003290556

wav2vec2-large-xls-r-300m-vi-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6916
  • Wer: 0.6686

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.495 4.6 400 3.4581 1.0
1.2055 9.2 800 1.6062 0.7986
0.3038 13.79 1200 1.5743 0.7307
0.1831 18.39 1600 1.6441 0.7119
0.1146 22.99 2000 1.6888 0.6977
0.0876 27.59 2400 1.6916 0.6686

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2