Lauler's picture
Update README.md
73c7f22 verified
metadata
language:
  - sv
pipeline_tag: automatic-speech-recognition

KB-Whisper Small (Beta)

Preliminary release candidate of the National Library of Sweden's new Whisper models for Swedish. This version is for testing only. We will be tuning the performance with additional post-training to reduce hallucations before releasing the final version of the model.

Usage

import torch
from datasets import load_dataset
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline

device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "KBLab/kb-whisper-small-beta"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, use_safetensors=True, cache_dir="cache"
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    torch_dtype=torch_dtype,
    device=device,
)

generate_kwargs = {"task": "transcribe", "language": "sv"}
# Add return_timestamps=True for output with timestamps
res = pipe("audio.mp3", 
           chunk_length_s=30,
           generate_kwargs={"task": "transcribe", "language": "sv"})