Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +18 -16
README.md CHANGED
@@ -2,37 +2,39 @@
2
  language:
3
  - en
4
  - ko
 
5
  tags:
6
  - generated_from_trainer
7
  datasets:
8
- - >-
9
- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
10
  metrics:
11
  - bleu
 
 
 
 
 
 
 
 
 
 
 
12
  model-index:
13
  - name: en2ko
14
  results:
15
  - task:
16
- name: Translation
17
  type: translation
 
18
  dataset:
19
- name: >-
20
- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
21
  koen,none,none,none,none
22
- type: >-
23
- KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
24
  args: koen,none,none,none,none
25
  metrics:
26
- - name: Bleu
27
- type: bleu
28
  value: 42.463
29
- license: apache-2.0
30
- pipeline_tag: translation
31
- widget:
32
- - text: "translate_en2ko: The Seoul Metropolitan Government said Wednesday that it would develop an AI-based congestion monitoring system to provide better information to passengers about crowd density at each subway station."
33
- example_title: "Sample 1"
34
- - text: "translate_en2ko: According to Seoul Metro, the operator of the subway service in Seoul, the new service will help analyze the real-time flow of passengers and crowd levels in subway compartments, improving operational efficiency."
35
- example_title: "Sample 2"
36
  ---
37
 
38
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
2
  language:
3
  - en
4
  - ko
5
+ license: apache-2.0
6
  tags:
7
  - generated_from_trainer
8
  datasets:
9
+ - KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
 
10
  metrics:
11
  - bleu
12
+ pipeline_tag: translation
13
+ widget:
14
+ - text: 'translate_en2ko: The Seoul Metropolitan Government said Wednesday that it
15
+ would develop an AI-based congestion monitoring system to provide better information
16
+ to passengers about crowd density at each subway station.'
17
+ example_title: Sample 1
18
+ - text: 'translate_en2ko: According to Seoul Metro, the operator of the subway service
19
+ in Seoul, the new service will help analyze the real-time flow of passengers and
20
+ crowd levels in subway compartments, improving operational efficiency.'
21
+ example_title: Sample 2
22
+ base_model: KETI-AIR/long-ke-t5-base
23
  model-index:
24
  - name: en2ko
25
  results:
26
  - task:
 
27
  type: translation
28
+ name: Translation
29
  dataset:
30
+ name: KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
 
31
  koen,none,none,none,none
32
+ type: KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation
 
33
  args: koen,none,none,none,none
34
  metrics:
35
+ - type: bleu
 
36
  value: 42.463
37
+ name: Bleu
 
 
 
 
 
 
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You