|
--- |
|
language: |
|
- ko |
|
- en |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- >- |
|
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: ko2en |
|
results: |
|
- task: |
|
name: Translation |
|
type: translation |
|
dataset: |
|
name: >- |
|
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation |
|
koen,none,none,none,none |
|
type: >- |
|
KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation |
|
args: koen,none,none,none,none |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 58.7008 |
|
license: apache-2.0 |
|
pipeline_tag: translation |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ko2en |
|
|
|
This model is a fine-tuned version of [KETI-AIR/long-ke-t5-base](https://huggingface.co/KETI-AIR/long-ke-t5-base) on the KETI-AIR/aihub_koenzh_food_translation,KETI-AIR/aihub_scitech_translation,KETI-AIR/aihub_scitech20_translation,KETI-AIR/aihub_socialtech20_translation,KETI-AIR/aihub_spoken_language_translation koen,none,none,none,none dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5186 |
|
- Bleu: 58.7008 |
|
- Gen Len: 27.0073 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:| |
|
| 0.6234 | 1.0 | 93762 | 0.5843 | 33.9843 | 17.5378 | |
|
| 0.5334 | 2.0 | 187524 | 0.5369 | 35.3271 | 17.5388 | |
|
| 0.4704 | 3.0 | 281286 | 0.5186 | 36.0533 | 17.5335 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.8.0 |
|
- Tokenizers 0.13.2 |