metadata
base_model: KHongJae/full_train_TE_D_0_10000to50000
library_name: diffusers
license: creativeml-openrail-m
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
KHongJae/Chatting_Based_Emoji_Generation_Model
T-Academy ASAC 6κΈ° DL νλ‘μ νΈμμ μ¬μ©ν μ΄λͺ¨ν°μ½ μμ± λͺ¨λΈμ λλ€.
κΈ°μ‘΄ λ¬μ¬ν ν둬ννΈμμλ§ μλ νλ Stable Diffusionμ λνν ν둬ννΈμμ μλν μ μλλ‘ μλν λͺ¨λΈμ λλ€.
DreamBooth for the text encoder was enabled: True.
Intended uses & limitations
![img_0](./λ λμ νΈ λ¨Ήκ³ μμ΄ 1.png) ![img_1](./λ λμ νΈ λ¨Ήκ³ μμ΄ 2.png) ![img_2](./λ λμ νΈ λ¨Ήκ³ μμ΄ 3.png)
How to use
pipeline = DiffusionPipeline.from_pretrained(
"KHongJae/Chatting_Based_Emoji_Generation_Model",
torch_dtype=torch.float16
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = "Create your own prompt"
negative_prompt = "Create your own negative prompt"
pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=200,
height=200,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.manual_seed(123456789),
).images[0]
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]