KHongJae's picture
Update README.md
c89565c verified
|
raw
history blame
1.52 kB
---
base_model: KHongJae/full_train_TE_D_0_10000to50000
library_name: diffusers
license: creativeml-openrail-m
tags:
- text-to-image
- dreambooth
- diffusers-training
- stable-diffusion
- stable-diffusion-diffusers
inference: true
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# KHongJae/Chatting_Based_Emoji_Generation_Model
T-Academy ASAC 6κΈ° DL ν”„λ‘œμ νŠΈμ—μ„œ μ‚¬μš©ν•œ 이λͺ¨ν‹°μ½˜ 생성 λͺ¨λΈμž…λ‹ˆλ‹€.
κΈ°μ‘΄ λ¬˜μ‚¬ν˜• ν”„λ‘¬ν”„νŠΈμ—μ„œλ§Œ μž‘λ™ ν•˜λ˜ Stable Diffusion을 λŒ€ν™”ν˜• ν”„λ‘¬ν”„νŠΈμ—μ„œ μž‘λ™ν•  수 μžˆλ„λ‘ μ‹œλ„ν•œ λͺ¨λΈμž…λ‹ˆλ‹€.
DreamBooth for the text encoder was enabled: True.
## Intended uses & limitations
#### How to use
```python
pipeline = DiffusionPipeline.from_pretrained(
"KHongJae/Chatting_Based_Emoji_Generation_Model",
torch_dtype=torch.float16
).to("cuda")
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
prompt = "Create your own prompt"
negative_prompt = "Create your own negative prompt"
pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
width=200,
height=200,
num_inference_steps=50,
num_images_per_prompt=1,
generator=torch.manual_seed(123456789),
).images[0]
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]