KasuleTrevor's picture
End of training
1308390 verified
metadata
license: apache-2.0
base_model: KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-130hr-v1
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: multilingual_speech_to_intent_wav2vec_xlsr
    results: []

multilingual_speech_to_intent_wav2vec_xlsr

This model is a fine-tuned version of KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-130hr-v1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1493
  • Accuracy: 0.9804
  • Precision: 0.9813
  • Recall: 0.9804
  • F1: 0.9805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.65 1.0 219 0.1235 0.9795 0.9799 0.9795 0.9795
0.2315 2.0 438 0.1033 0.9851 0.9854 0.9851 0.9852
0.2355 3.0 657 0.1331 0.9724 0.9740 0.9724 0.9724
0.1943 4.0 876 0.2951 0.9250 0.9304 0.9250 0.9245
0.1854 5.0 1095 0.5676 0.8931 0.9056 0.8931 0.8925
0.1499 6.0 1314 0.3552 0.9243 0.9344 0.9243 0.9240
0.1461 7.0 1533 0.2503 0.9441 0.9492 0.9441 0.9442
0.1407 8.0 1752 0.2951 0.9214 0.9269 0.9214 0.9212
0.116 9.0 1971 0.3022 0.9391 0.9425 0.9391 0.9390
0.1142 10.0 2190 0.2169 0.9483 0.9526 0.9483 0.9483
0.1064 11.0 2409 0.5370 0.9115 0.9171 0.9115 0.9111
0.1067 12.0 2628 1.1525 0.8259 0.8471 0.8259 0.8266

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1