metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-ln-10hr-v1
results: []
wav2vec2-large-ln-10hr-v1
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5339
- Model Preparation Time: 0.0079
- Wer: 0.2025
- Cer: 0.0593
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
12.3976 | 0.9956 | 112 | 4.7441 | 0.0079 | 1.0 | 1.0 |
3.5953 | 2.0 | 225 | 2.9942 | 0.0079 | 1.0 | 1.0 |
2.8828 | 2.9956 | 337 | 2.7593 | 0.0079 | 1.0 | 1.0 |
2.5824 | 4.0 | 450 | 1.6271 | 0.0079 | 1.0 | 0.4698 |
0.9071 | 4.9956 | 562 | 0.5144 | 0.0079 | 0.4170 | 0.1076 |
0.5255 | 6.0 | 675 | 0.3454 | 0.0079 | 0.2987 | 0.0815 |
0.3912 | 6.9956 | 787 | 0.2978 | 0.0079 | 0.2514 | 0.0704 |
0.309 | 8.0 | 900 | 0.2725 | 0.0079 | 0.2530 | 0.0682 |
0.258 | 8.9956 | 1012 | 0.2571 | 0.0079 | 0.2393 | 0.0645 |
0.2186 | 10.0 | 1125 | 0.2590 | 0.0079 | 0.2319 | 0.0618 |
0.1888 | 10.9956 | 1237 | 0.2425 | 0.0079 | 0.2171 | 0.0589 |
0.1575 | 12.0 | 1350 | 0.2335 | 0.0079 | 0.2085 | 0.0545 |
0.1427 | 12.9956 | 1462 | 0.2418 | 0.0079 | 0.2013 | 0.0554 |
0.1242 | 14.0 | 1575 | 0.2564 | 0.0079 | 0.1966 | 0.0533 |
0.1137 | 14.9956 | 1687 | 0.2448 | 0.0079 | 0.1865 | 0.0512 |
0.1044 | 16.0 | 1800 | 0.2428 | 0.0079 | 0.1957 | 0.0539 |
0.0901 | 16.9956 | 1912 | 0.2610 | 0.0079 | 0.1913 | 0.0519 |
0.085 | 18.0 | 2025 | 0.2505 | 0.0079 | 0.1807 | 0.0495 |
0.0789 | 18.9956 | 2137 | 0.2709 | 0.0079 | 0.1871 | 0.0522 |
0.0703 | 20.0 | 2250 | 0.2533 | 0.0079 | 0.1820 | 0.0505 |
0.0674 | 20.9956 | 2362 | 0.2647 | 0.0079 | 0.1792 | 0.0491 |
0.0625 | 22.0 | 2475 | 0.2555 | 0.0079 | 0.1772 | 0.0504 |
0.0596 | 22.9956 | 2587 | 0.2550 | 0.0079 | 0.1795 | 0.0496 |
0.0539 | 24.0 | 2700 | 0.2657 | 0.0079 | 0.1797 | 0.0509 |
0.0538 | 24.9956 | 2812 | 0.2602 | 0.0079 | 0.1913 | 0.0516 |
0.0537 | 26.0 | 2925 | 0.2546 | 0.0079 | 0.1740 | 0.0475 |
0.0471 | 26.9956 | 3037 | 0.2634 | 0.0079 | 0.1813 | 0.0499 |
0.0447 | 28.0 | 3150 | 0.2699 | 0.0079 | 0.1751 | 0.0480 |
0.0425 | 28.9956 | 3262 | 0.2721 | 0.0079 | 0.1701 | 0.0470 |
0.0404 | 30.0 | 3375 | 0.2705 | 0.0079 | 0.1733 | 0.0484 |
0.0372 | 30.9956 | 3487 | 0.2754 | 0.0079 | 0.1749 | 0.0482 |
0.0345 | 32.0 | 3600 | 0.2923 | 0.0079 | 0.1747 | 0.0480 |
0.0328 | 32.9956 | 3712 | 0.2876 | 0.0079 | 0.1680 | 0.0473 |
0.034 | 34.0 | 3825 | 0.2867 | 0.0079 | 0.1704 | 0.0479 |
0.032 | 34.9956 | 3937 | 0.2732 | 0.0079 | 0.1626 | 0.0450 |
0.0306 | 36.0 | 4050 | 0.2827 | 0.0079 | 0.1632 | 0.0456 |
0.0338 | 36.9956 | 4162 | 0.2774 | 0.0079 | 0.1707 | 0.0467 |
0.0305 | 38.0 | 4275 | 0.2900 | 0.0079 | 0.1726 | 0.0475 |
0.0299 | 38.9956 | 4387 | 0.2825 | 0.0079 | 0.1614 | 0.0459 |
0.0268 | 40.0 | 4500 | 0.2827 | 0.0079 | 0.1599 | 0.0449 |
0.0275 | 40.9956 | 4612 | 0.3024 | 0.0079 | 0.1599 | 0.0449 |
0.0244 | 42.0 | 4725 | 0.2887 | 0.0079 | 0.1594 | 0.0441 |
0.0208 | 42.9956 | 4837 | 0.2908 | 0.0079 | 0.1587 | 0.0441 |
0.02 | 44.0 | 4950 | 0.2938 | 0.0079 | 0.1595 | 0.0447 |
0.0216 | 44.9956 | 5062 | 0.2907 | 0.0079 | 0.1563 | 0.0443 |
0.0213 | 46.0 | 5175 | 0.2965 | 0.0079 | 0.1608 | 0.0444 |
0.0202 | 46.9956 | 5287 | 0.2920 | 0.0079 | 0.1577 | 0.0435 |
0.0201 | 48.0 | 5400 | 0.3040 | 0.0079 | 0.1631 | 0.0451 |
0.021 | 48.9956 | 5512 | 0.2833 | 0.0079 | 0.1594 | 0.0446 |
0.0212 | 50.0 | 5625 | 0.2892 | 0.0079 | 0.1547 | 0.0428 |
0.0183 | 50.9956 | 5737 | 0.2885 | 0.0079 | 0.1549 | 0.0431 |
0.019 | 52.0 | 5850 | 0.2776 | 0.0079 | 0.1586 | 0.0444 |
0.0189 | 52.9956 | 5962 | 0.2799 | 0.0079 | 0.1541 | 0.0423 |
0.0187 | 54.0 | 6075 | 0.3060 | 0.0079 | 0.1540 | 0.0429 |
0.0157 | 54.9956 | 6187 | 0.2955 | 0.0079 | 0.1505 | 0.0424 |
0.0173 | 56.0 | 6300 | 0.2911 | 0.0079 | 0.1551 | 0.0427 |
0.0153 | 56.9956 | 6412 | 0.2895 | 0.0079 | 0.1595 | 0.0434 |
0.0161 | 58.0 | 6525 | 0.2899 | 0.0079 | 0.1518 | 0.0417 |
0.0149 | 58.9956 | 6637 | 0.2862 | 0.0079 | 0.1526 | 0.0421 |
0.0154 | 60.0 | 6750 | 0.2953 | 0.0079 | 0.1467 | 0.0412 |
0.014 | 60.9956 | 6862 | 0.2970 | 0.0079 | 0.1487 | 0.0417 |
0.011 | 62.0 | 6975 | 0.3068 | 0.0079 | 0.1481 | 0.0418 |
0.0137 | 62.9956 | 7087 | 0.3010 | 0.0079 | 0.1507 | 0.0422 |
0.0122 | 64.0 | 7200 | 0.2963 | 0.0079 | 0.1508 | 0.0419 |
0.0118 | 64.9956 | 7312 | 0.2989 | 0.0079 | 0.1524 | 0.0421 |
0.0116 | 66.0 | 7425 | 0.3032 | 0.0079 | 0.1492 | 0.0410 |
0.0111 | 66.9956 | 7537 | 0.3148 | 0.0079 | 0.1470 | 0.0417 |
0.0112 | 68.0 | 7650 | 0.3003 | 0.0079 | 0.1495 | 0.0415 |
0.0103 | 68.9956 | 7762 | 0.3057 | 0.0079 | 0.1497 | 0.0415 |
0.0096 | 70.0 | 7875 | 0.3050 | 0.0079 | 0.1467 | 0.0409 |
0.0097 | 70.9956 | 7987 | 0.3085 | 0.0079 | 0.1475 | 0.0408 |
0.0091 | 72.0 | 8100 | 0.3008 | 0.0079 | 0.1422 | 0.0404 |
0.0077 | 72.9956 | 8212 | 0.3051 | 0.0079 | 0.1437 | 0.0405 |
0.0091 | 74.0 | 8325 | 0.3055 | 0.0079 | 0.1445 | 0.0410 |
0.008 | 74.9956 | 8437 | 0.3016 | 0.0079 | 0.1444 | 0.0407 |
0.0098 | 76.0 | 8550 | 0.3001 | 0.0079 | 0.1422 | 0.0403 |
0.0092 | 76.9956 | 8662 | 0.3062 | 0.0079 | 0.1439 | 0.0403 |
0.0074 | 78.0 | 8775 | 0.3063 | 0.0079 | 0.1428 | 0.0401 |
0.0083 | 78.9956 | 8887 | 0.3064 | 0.0079 | 0.1448 | 0.0407 |
0.0076 | 80.0 | 9000 | 0.3033 | 0.0079 | 0.1436 | 0.0402 |
0.0078 | 80.9956 | 9112 | 0.3058 | 0.0079 | 0.1429 | 0.0402 |
0.0078 | 82.0 | 9225 | 0.3078 | 0.0079 | 0.1416 | 0.0399 |
0.0071 | 82.9956 | 9337 | 0.3098 | 0.0079 | 0.1438 | 0.0402 |
0.0075 | 84.0 | 9450 | 0.3101 | 0.0079 | 0.1462 | 0.0405 |
0.0071 | 84.9956 | 9562 | 0.3073 | 0.0079 | 0.1457 | 0.0404 |
0.0086 | 86.0 | 9675 | 0.3063 | 0.0079 | 0.1436 | 0.0402 |
0.0068 | 86.9956 | 9787 | 0.3058 | 0.0079 | 0.1432 | 0.0402 |
0.0069 | 88.0 | 9900 | 0.3037 | 0.0079 | 0.1434 | 0.0401 |
0.0073 | 88.9956 | 10012 | 0.3053 | 0.0079 | 0.1425 | 0.0400 |
0.0073 | 90.0 | 10125 | 0.3050 | 0.0079 | 0.1425 | 0.0398 |
0.0063 | 90.9956 | 10237 | 0.3074 | 0.0079 | 0.1436 | 0.0400 |
0.0072 | 92.0 | 10350 | 0.3067 | 0.0079 | 0.1436 | 0.0400 |
0.0066 | 92.9956 | 10462 | 0.3065 | 0.0079 | 0.1432 | 0.0399 |
0.0065 | 94.0 | 10575 | 0.3069 | 0.0079 | 0.1437 | 0.0400 |
0.0075 | 94.9956 | 10687 | 0.3068 | 0.0079 | 0.1430 | 0.0399 |
0.0064 | 96.0 | 10800 | 0.3068 | 0.0079 | 0.1430 | 0.0398 |
0.0064 | 96.9956 | 10912 | 0.3070 | 0.0079 | 0.1434 | 0.0399 |
0.0067 | 98.0 | 11025 | 0.3069 | 0.0079 | 0.1431 | 0.0398 |
0.0064 | 98.9956 | 11137 | 0.3069 | 0.0079 | 0.1434 | 0.0399 |
0.0076 | 99.5556 | 11200 | 0.3069 | 0.0079 | 0.1434 | 0.0399 |
Framework versions
- Transformers 4.43.1
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1