Visualize in Weights & Biases

wav2vec2-large-xls-r-300m-ln-BibleTTS-1hr-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6740
  • Wer: 0.7140
  • Cer: 0.1802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
17.416 0.9091 5 17.5456 1.0 1.5562
14.5068 2.0 11 17.5120 1.0 1.4789
17.3472 2.9091 16 17.4189 1.0 1.1780
14.3268 4.0 22 17.2016 1.0 0.9674
17.0088 4.9091 27 17.0130 1.0 1.0293
13.9609 6.0 33 16.7075 1.0 0.8481
16.4587 6.9091 38 16.4284 1.0 0.8363
13.3164 8.0 44 15.9681 1.0 0.9944
15.3216 8.9091 49 15.3243 1.0 1.0
11.5548 10.0 55 14.0370 1.0 1.0
11.5967 10.9091 60 12.5247 1.0 1.0
8.2049 12.0 66 11.1587 1.0 1.0
8.4152 12.9091 71 10.0872 1.0 1.0
6.0687 14.0 77 8.8445 1.0 1.0
6.4176 14.9091 82 8.1147 1.0 1.0
4.8424 16.0 88 7.4897 1.0 1.0
5.3723 16.9091 93 6.9360 1.0 1.0
4.1999 18.0 99 6.3607 1.0 1.0
4.7866 18.9091 104 5.9263 1.0 1.0
3.8236 20.0 110 5.5028 1.0 1.0
4.4302 20.9091 115 5.0334 1.0 1.0
3.591 22.0 121 4.6869 1.0 1.0
4.1949 22.9091 126 4.4762 1.0 1.0
3.4191 24.0 132 4.2646 1.0 1.0
4.0108 24.9091 137 4.1448 1.0 1.0
3.28 26.0 143 3.9637 1.0 1.0
3.8588 26.9091 148 3.8742 1.0 1.0
3.158 28.0 154 3.7669 1.0 1.0
3.7243 28.9091 159 3.7039 1.0 1.0
3.0502 30.0 165 3.5948 1.0 1.0
3.6 30.9091 170 3.5306 1.0 1.0
2.9515 32.0 176 3.4187 1.0 1.0
3.4903 32.9091 181 3.3450 1.0 1.0
2.8763 34.0 187 3.2715 1.0 1.0
3.3998 34.9091 192 3.2082 1.0 1.0
2.7964 36.0 198 3.2021 1.0 1.0
3.3113 36.9091 203 3.1217 1.0 1.0
2.7362 38.0 209 3.0453 1.0 1.0
3.2274 38.9091 214 3.0072 1.0 1.0
2.6544 40.0 220 2.9557 1.0 1.0
3.1479 40.9091 225 2.9229 1.0 1.0
2.5983 42.0 231 2.8882 1.0 1.0
3.0854 42.9091 236 2.8638 1.0 1.0
2.5509 44.0 242 2.8354 1.0 1.0
3.0388 44.9091 247 2.8169 1.0 1.0
2.517 46.0 253 2.8000 1.0 1.0
3.0042 46.9091 258 2.7845 1.0 1.0
2.4924 48.0 264 2.7746 1.0 1.0
2.9774 48.9091 269 2.7673 1.0 1.0
2.4696 50.0 275 2.7573 1.0 1.0
2.9528 50.9091 280 2.7507 1.0 1.0
2.4516 52.0 286 2.7300 1.0 1.0
2.9192 52.9091 291 2.7201 1.0 1.0
2.4026 54.0 297 2.6965 1.0 1.0
2.8441 54.9091 302 2.6793 1.0 1.0
2.3344 56.0 308 2.6544 1.0 1.0
2.7453 56.9091 313 2.6112 1.0 1.0
2.223 58.0 319 2.5443 1.0 1.0
2.5596 58.9091 324 2.4781 1.0 0.9985
2.0074 60.0 330 2.3645 1.0 0.8402
2.2236 60.9091 335 2.2414 1.0 0.7652
1.703 62.0 341 2.0875 1.0 0.6468
1.8108 62.9091 346 2.0012 1.0 0.6570
1.2854 64.0 352 1.7562 0.9994 0.5339
1.289 64.9091 357 1.5530 0.9984 0.4409
0.8914 66.0 363 1.5710 0.9998 0.5147
0.8887 66.9091 368 1.3824 0.9547 0.4007
0.6132 68.0 374 1.3746 0.9759 0.4337
0.6176 68.9091 379 1.2084 0.9326 0.3478
0.4483 70.0 385 1.3181 0.9215 0.3787
0.4877 70.9091 390 1.1160 0.8970 0.3005
0.3614 72.0 396 1.1371 0.9054 0.3223
0.3889 72.9091 401 1.0581 0.8344 0.2827
0.2835 74.0 407 0.8882 0.7899 0.2292
0.3203 74.9091 412 0.9902 0.8447 0.2651
0.2494 76.0 418 1.0597 0.8338 0.2928
0.2693 76.9091 423 0.9066 0.8115 0.2517
0.2094 78.0 429 0.8811 0.7823 0.2311
0.2332 78.9091 434 0.9556 0.8330 0.2648
0.1874 80.0 440 0.9001 0.8103 0.2374
0.2155 80.9091 445 0.9119 0.8338 0.2499
0.1691 82.0 451 0.8158 0.7254 0.2066
0.1941 82.9091 456 0.8922 0.8010 0.2407
0.1537 84.0 462 0.8880 0.8137 0.2343
0.1801 84.9091 467 0.8078 0.7503 0.2021
0.141 86.0 473 0.7358 0.7340 0.1920
0.161 86.9091 478 0.8496 0.7928 0.2307
0.1317 88.0 484 0.7789 0.7491 0.2017
0.1435 88.9091 489 0.9110 0.8074 0.2435
0.1168 90.0 495 0.7392 0.7249 0.1908
0.1223 90.9091 500 0.7573 0.7177 0.1904

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.2.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
35
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KasuleTrevor/wav2vec2-large-xls-r-300m-ln-BibleTTS-1hr-v1

Finetuned
(524)
this model