KasuleTrevor's picture
End of training
276c7d1 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_8_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-sw-1hr-v1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_8_0
          type: common_voice_8_0
          config: sw
          split: test
          args: sw
        metrics:
          - name: Wer
            type: wer
            value: 0.5901667526216263

wav2vec2-large-xls-r-300m-sw-1hr-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_8_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8004
  • Wer: 0.5902
  • Cer: 0.1498

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
10.7706 4.6512 100 5.0262 1.0 1.0
3.7038 9.3023 200 3.2132 1.0 1.0
2.9571 13.9535 300 2.8597 1.0 1.0
2.7859 18.6047 400 2.6007 1.0 0.7810
1.2103 23.2558 500 0.8662 0.6976 0.1859
0.3075 27.9070 600 0.7534 0.6533 0.1695
0.1911 32.5581 700 0.7585 0.6282 0.1607
0.1482 37.2093 800 0.8062 0.6340 0.1667
0.1241 41.8605 900 0.7999 0.6190 0.1605
0.1085 46.5116 1000 0.8105 0.6001 0.1524
0.0935 51.1628 1100 0.7972 0.5914 0.1502
0.0833 55.8140 1200 0.7978 0.5931 0.1505

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1