wav2vec2-xls-r-300m-nyn_filtered-yogera-v1

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7382
  • Model Preparation Time: 0.0103
  • Wer: 0.5477
  • Cer: 0.1679

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.033
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
7.5062 1.0 137 2.9944 0.0103 1.0 1.0
2.8439 2.0 274 2.7840 0.0103 1.0 1.0
1.2957 3.0 411 0.9259 0.0103 0.7567 0.2434
0.4792 4.0 548 0.8136 0.0103 0.6549 0.2037
0.3563 5.0 685 0.8125 0.0103 0.6330 0.1982
0.2934 6.0 822 0.7634 0.0103 0.6229 0.2013
0.2445 7.0 959 0.7673 0.0103 0.6129 0.1899
0.2069 8.0 1096 0.7700 0.0103 0.6323 0.1977
0.1773 9.0 1233 0.8577 0.0103 0.6233 0.1916
0.1539 10.0 1370 0.8454 0.0103 0.6169 0.1916
0.1252 11.0 1507 0.9611 0.0103 0.6181 0.1904
0.1078 12.0 1644 1.0559 0.0103 0.6321 0.1911
0.0938 13.0 1781 1.0658 0.0103 0.6244 0.1928
0.0806 14.0 1918 1.0884 0.0103 0.6163 0.1879
0.0713 15.0 2055 1.0535 0.0103 0.6162 0.1864
0.0638 16.0 2192 1.0985 0.0103 0.6159 0.1893
0.0608 17.0 2329 1.1801 0.0103 0.6078 0.1887
0.0528 18.0 2466 1.1715 0.0103 0.6070 0.1861
0.0483 19.0 2603 1.2085 0.0103 0.6221 0.1865
0.0441 20.0 2740 1.2510 0.0103 0.6057 0.1842
0.0416 21.0 2877 1.2759 0.0103 0.6058 0.1845
0.0432 22.0 3014 1.3016 0.0103 0.5996 0.1840
0.0371 23.0 3151 1.2451 0.0103 0.5957 0.1831
0.036 24.0 3288 1.3475 0.0103 0.6098 0.1889
0.0373 25.0 3425 1.3265 0.0103 0.6069 0.1893
0.0346 26.0 3562 1.3153 0.0103 0.5912 0.1826
0.0335 27.0 3699 1.3640 0.0103 0.5987 0.1896
0.0322 28.0 3836 1.2965 0.0103 0.5902 0.1830
0.0286 29.0 3973 1.4187 0.0103 0.5951 0.1844
0.0284 30.0 4110 1.3861 0.0103 0.5864 0.1810
0.0274 31.0 4247 1.3071 0.0103 0.5843 0.1782
0.0291 32.0 4384 1.3692 0.0103 0.5829 0.1810
0.0273 33.0 4521 1.3644 0.0103 0.5839 0.1820
0.0271 34.0 4658 1.3298 0.0103 0.5909 0.1817
0.0252 35.0 4795 1.3897 0.0103 0.5787 0.1794
0.0257 36.0 4932 1.4339 0.0103 0.5891 0.1823
0.0236 37.0 5069 1.4054 0.0103 0.5976 0.1845
0.0239 38.0 5206 1.3777 0.0103 0.5831 0.1810
0.0227 39.0 5343 1.3901 0.0103 0.5857 0.1811
0.0233 40.0 5480 1.3737 0.0103 0.5904 0.1833
0.0234 41.0 5617 1.3843 0.0103 0.5843 0.1821
0.0217 42.0 5754 1.3170 0.0103 0.5822 0.1811
0.0197 43.0 5891 1.4165 0.0103 0.5847 0.1800
0.0197 44.0 6028 1.4449 0.0103 0.5759 0.1773
0.0203 45.0 6165 1.3591 0.0103 0.5843 0.1790
0.0199 46.0 6302 1.5098 0.0103 0.5840 0.1806
0.0196 47.0 6439 1.4038 0.0103 0.5755 0.1767
0.0198 48.0 6576 1.4440 0.0103 0.5798 0.1779
0.0194 49.0 6713 1.4583 0.0103 0.5837 0.1782
0.0179 50.0 6850 1.4186 0.0103 0.5738 0.1774
0.0166 51.0 6987 1.4620 0.0103 0.5735 0.1777
0.0163 52.0 7124 1.5091 0.0103 0.5691 0.1761
0.0167 53.0 7261 1.4249 0.0103 0.5723 0.1759
0.0156 54.0 7398 1.5054 0.0103 0.5773 0.1791
0.0165 55.0 7535 1.4583 0.0103 0.5812 0.1796
0.0136 56.0 7672 1.5845 0.0103 0.5710 0.1766
0.015 57.0 7809 1.4338 0.0103 0.5750 0.1769
0.0139 58.0 7946 1.6348 0.0103 0.5789 0.1790
0.0141 59.0 8083 1.5682 0.0103 0.5784 0.1773
0.0135 60.0 8220 1.5523 0.0103 0.5678 0.1741
0.0138 61.0 8357 1.5624 0.0103 0.5730 0.1768
0.0125 62.0 8494 1.5838 0.0103 0.5707 0.1749
0.0126 63.0 8631 1.5254 0.0103 0.5614 0.1742
0.0116 64.0 8768 1.6224 0.0103 0.5606 0.1740
0.0127 65.0 8905 1.5903 0.0103 0.5678 0.1761
0.0115 66.0 9042 1.5875 0.0103 0.5672 0.1747
0.0116 67.0 9179 1.6402 0.0103 0.5684 0.1761
0.0114 68.0 9316 1.6358 0.0103 0.5666 0.1756
0.0111 69.0 9453 1.5798 0.0103 0.5607 0.1738
0.011 70.0 9590 1.6475 0.0103 0.5714 0.1771
0.0119 71.0 9727 1.5381 0.0103 0.5704 0.1779
0.0112 72.0 9864 1.5897 0.0103 0.5646 0.1741
0.0105 73.0 10001 1.6031 0.0103 0.5614 0.1721
0.0106 74.0 10138 1.5518 0.0103 0.5708 0.1747
0.0102 75.0 10275 1.5620 0.0103 0.5637 0.1748
0.0092 76.0 10412 1.6083 0.0103 0.5644 0.1750
0.0098 77.0 10549 1.6316 0.0103 0.5626 0.1735
0.0084 78.0 10686 1.6316 0.0103 0.5537 0.1709
0.0086 79.0 10823 1.6213 0.0103 0.5577 0.1728
0.008 80.0 10960 1.6382 0.0103 0.5518 0.1720
0.008 81.0 11097 1.6010 0.0103 0.5515 0.1702
0.0079 82.0 11234 1.6379 0.0103 0.5549 0.1716
0.0078 83.0 11371 1.6614 0.0103 0.5559 0.1716
0.0078 84.0 11508 1.6183 0.0103 0.5611 0.1732
0.0076 85.0 11645 1.6835 0.0103 0.5524 0.1707
0.0064 86.0 11782 1.6764 0.0103 0.5515 0.1697
0.0067 87.0 11919 1.6797 0.0103 0.5548 0.1694
0.0065 88.0 12056 1.6550 0.0103 0.5503 0.1697
0.0064 89.0 12193 1.7282 0.0103 0.5504 0.1695
0.0062 90.0 12330 1.6935 0.0103 0.5506 0.1701
0.0061 91.0 12467 1.7180 0.0103 0.5576 0.1704
0.0057 92.0 12604 1.7489 0.0103 0.5521 0.1689
0.0057 93.0 12741 1.7571 0.0103 0.5537 0.1681
0.0058 94.0 12878 1.7497 0.0103 0.5517 0.1682
0.0057 95.0 13015 1.7382 0.0103 0.5477 0.1679
0.0054 96.0 13152 1.7279 0.0103 0.5491 0.1675
0.0055 97.0 13289 1.7383 0.0103 0.5500 0.1679
0.0052 98.0 13426 1.7410 0.0103 0.5484 0.1676
0.0054 99.0 13563 1.7224 0.0103 0.5484 0.1671
0.0051 100.0 13700 1.7312 0.0103 0.5507 0.1674

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
315M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v1

Finetuned
(708)
this model