wav2vec2-xls-r-300m-nyn_filtered-yogera-v1
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7382
- Model Preparation Time: 0.0103
- Wer: 0.5477
- Cer: 0.1679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.033
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
7.5062 | 1.0 | 137 | 2.9944 | 0.0103 | 1.0 | 1.0 |
2.8439 | 2.0 | 274 | 2.7840 | 0.0103 | 1.0 | 1.0 |
1.2957 | 3.0 | 411 | 0.9259 | 0.0103 | 0.7567 | 0.2434 |
0.4792 | 4.0 | 548 | 0.8136 | 0.0103 | 0.6549 | 0.2037 |
0.3563 | 5.0 | 685 | 0.8125 | 0.0103 | 0.6330 | 0.1982 |
0.2934 | 6.0 | 822 | 0.7634 | 0.0103 | 0.6229 | 0.2013 |
0.2445 | 7.0 | 959 | 0.7673 | 0.0103 | 0.6129 | 0.1899 |
0.2069 | 8.0 | 1096 | 0.7700 | 0.0103 | 0.6323 | 0.1977 |
0.1773 | 9.0 | 1233 | 0.8577 | 0.0103 | 0.6233 | 0.1916 |
0.1539 | 10.0 | 1370 | 0.8454 | 0.0103 | 0.6169 | 0.1916 |
0.1252 | 11.0 | 1507 | 0.9611 | 0.0103 | 0.6181 | 0.1904 |
0.1078 | 12.0 | 1644 | 1.0559 | 0.0103 | 0.6321 | 0.1911 |
0.0938 | 13.0 | 1781 | 1.0658 | 0.0103 | 0.6244 | 0.1928 |
0.0806 | 14.0 | 1918 | 1.0884 | 0.0103 | 0.6163 | 0.1879 |
0.0713 | 15.0 | 2055 | 1.0535 | 0.0103 | 0.6162 | 0.1864 |
0.0638 | 16.0 | 2192 | 1.0985 | 0.0103 | 0.6159 | 0.1893 |
0.0608 | 17.0 | 2329 | 1.1801 | 0.0103 | 0.6078 | 0.1887 |
0.0528 | 18.0 | 2466 | 1.1715 | 0.0103 | 0.6070 | 0.1861 |
0.0483 | 19.0 | 2603 | 1.2085 | 0.0103 | 0.6221 | 0.1865 |
0.0441 | 20.0 | 2740 | 1.2510 | 0.0103 | 0.6057 | 0.1842 |
0.0416 | 21.0 | 2877 | 1.2759 | 0.0103 | 0.6058 | 0.1845 |
0.0432 | 22.0 | 3014 | 1.3016 | 0.0103 | 0.5996 | 0.1840 |
0.0371 | 23.0 | 3151 | 1.2451 | 0.0103 | 0.5957 | 0.1831 |
0.036 | 24.0 | 3288 | 1.3475 | 0.0103 | 0.6098 | 0.1889 |
0.0373 | 25.0 | 3425 | 1.3265 | 0.0103 | 0.6069 | 0.1893 |
0.0346 | 26.0 | 3562 | 1.3153 | 0.0103 | 0.5912 | 0.1826 |
0.0335 | 27.0 | 3699 | 1.3640 | 0.0103 | 0.5987 | 0.1896 |
0.0322 | 28.0 | 3836 | 1.2965 | 0.0103 | 0.5902 | 0.1830 |
0.0286 | 29.0 | 3973 | 1.4187 | 0.0103 | 0.5951 | 0.1844 |
0.0284 | 30.0 | 4110 | 1.3861 | 0.0103 | 0.5864 | 0.1810 |
0.0274 | 31.0 | 4247 | 1.3071 | 0.0103 | 0.5843 | 0.1782 |
0.0291 | 32.0 | 4384 | 1.3692 | 0.0103 | 0.5829 | 0.1810 |
0.0273 | 33.0 | 4521 | 1.3644 | 0.0103 | 0.5839 | 0.1820 |
0.0271 | 34.0 | 4658 | 1.3298 | 0.0103 | 0.5909 | 0.1817 |
0.0252 | 35.0 | 4795 | 1.3897 | 0.0103 | 0.5787 | 0.1794 |
0.0257 | 36.0 | 4932 | 1.4339 | 0.0103 | 0.5891 | 0.1823 |
0.0236 | 37.0 | 5069 | 1.4054 | 0.0103 | 0.5976 | 0.1845 |
0.0239 | 38.0 | 5206 | 1.3777 | 0.0103 | 0.5831 | 0.1810 |
0.0227 | 39.0 | 5343 | 1.3901 | 0.0103 | 0.5857 | 0.1811 |
0.0233 | 40.0 | 5480 | 1.3737 | 0.0103 | 0.5904 | 0.1833 |
0.0234 | 41.0 | 5617 | 1.3843 | 0.0103 | 0.5843 | 0.1821 |
0.0217 | 42.0 | 5754 | 1.3170 | 0.0103 | 0.5822 | 0.1811 |
0.0197 | 43.0 | 5891 | 1.4165 | 0.0103 | 0.5847 | 0.1800 |
0.0197 | 44.0 | 6028 | 1.4449 | 0.0103 | 0.5759 | 0.1773 |
0.0203 | 45.0 | 6165 | 1.3591 | 0.0103 | 0.5843 | 0.1790 |
0.0199 | 46.0 | 6302 | 1.5098 | 0.0103 | 0.5840 | 0.1806 |
0.0196 | 47.0 | 6439 | 1.4038 | 0.0103 | 0.5755 | 0.1767 |
0.0198 | 48.0 | 6576 | 1.4440 | 0.0103 | 0.5798 | 0.1779 |
0.0194 | 49.0 | 6713 | 1.4583 | 0.0103 | 0.5837 | 0.1782 |
0.0179 | 50.0 | 6850 | 1.4186 | 0.0103 | 0.5738 | 0.1774 |
0.0166 | 51.0 | 6987 | 1.4620 | 0.0103 | 0.5735 | 0.1777 |
0.0163 | 52.0 | 7124 | 1.5091 | 0.0103 | 0.5691 | 0.1761 |
0.0167 | 53.0 | 7261 | 1.4249 | 0.0103 | 0.5723 | 0.1759 |
0.0156 | 54.0 | 7398 | 1.5054 | 0.0103 | 0.5773 | 0.1791 |
0.0165 | 55.0 | 7535 | 1.4583 | 0.0103 | 0.5812 | 0.1796 |
0.0136 | 56.0 | 7672 | 1.5845 | 0.0103 | 0.5710 | 0.1766 |
0.015 | 57.0 | 7809 | 1.4338 | 0.0103 | 0.5750 | 0.1769 |
0.0139 | 58.0 | 7946 | 1.6348 | 0.0103 | 0.5789 | 0.1790 |
0.0141 | 59.0 | 8083 | 1.5682 | 0.0103 | 0.5784 | 0.1773 |
0.0135 | 60.0 | 8220 | 1.5523 | 0.0103 | 0.5678 | 0.1741 |
0.0138 | 61.0 | 8357 | 1.5624 | 0.0103 | 0.5730 | 0.1768 |
0.0125 | 62.0 | 8494 | 1.5838 | 0.0103 | 0.5707 | 0.1749 |
0.0126 | 63.0 | 8631 | 1.5254 | 0.0103 | 0.5614 | 0.1742 |
0.0116 | 64.0 | 8768 | 1.6224 | 0.0103 | 0.5606 | 0.1740 |
0.0127 | 65.0 | 8905 | 1.5903 | 0.0103 | 0.5678 | 0.1761 |
0.0115 | 66.0 | 9042 | 1.5875 | 0.0103 | 0.5672 | 0.1747 |
0.0116 | 67.0 | 9179 | 1.6402 | 0.0103 | 0.5684 | 0.1761 |
0.0114 | 68.0 | 9316 | 1.6358 | 0.0103 | 0.5666 | 0.1756 |
0.0111 | 69.0 | 9453 | 1.5798 | 0.0103 | 0.5607 | 0.1738 |
0.011 | 70.0 | 9590 | 1.6475 | 0.0103 | 0.5714 | 0.1771 |
0.0119 | 71.0 | 9727 | 1.5381 | 0.0103 | 0.5704 | 0.1779 |
0.0112 | 72.0 | 9864 | 1.5897 | 0.0103 | 0.5646 | 0.1741 |
0.0105 | 73.0 | 10001 | 1.6031 | 0.0103 | 0.5614 | 0.1721 |
0.0106 | 74.0 | 10138 | 1.5518 | 0.0103 | 0.5708 | 0.1747 |
0.0102 | 75.0 | 10275 | 1.5620 | 0.0103 | 0.5637 | 0.1748 |
0.0092 | 76.0 | 10412 | 1.6083 | 0.0103 | 0.5644 | 0.1750 |
0.0098 | 77.0 | 10549 | 1.6316 | 0.0103 | 0.5626 | 0.1735 |
0.0084 | 78.0 | 10686 | 1.6316 | 0.0103 | 0.5537 | 0.1709 |
0.0086 | 79.0 | 10823 | 1.6213 | 0.0103 | 0.5577 | 0.1728 |
0.008 | 80.0 | 10960 | 1.6382 | 0.0103 | 0.5518 | 0.1720 |
0.008 | 81.0 | 11097 | 1.6010 | 0.0103 | 0.5515 | 0.1702 |
0.0079 | 82.0 | 11234 | 1.6379 | 0.0103 | 0.5549 | 0.1716 |
0.0078 | 83.0 | 11371 | 1.6614 | 0.0103 | 0.5559 | 0.1716 |
0.0078 | 84.0 | 11508 | 1.6183 | 0.0103 | 0.5611 | 0.1732 |
0.0076 | 85.0 | 11645 | 1.6835 | 0.0103 | 0.5524 | 0.1707 |
0.0064 | 86.0 | 11782 | 1.6764 | 0.0103 | 0.5515 | 0.1697 |
0.0067 | 87.0 | 11919 | 1.6797 | 0.0103 | 0.5548 | 0.1694 |
0.0065 | 88.0 | 12056 | 1.6550 | 0.0103 | 0.5503 | 0.1697 |
0.0064 | 89.0 | 12193 | 1.7282 | 0.0103 | 0.5504 | 0.1695 |
0.0062 | 90.0 | 12330 | 1.6935 | 0.0103 | 0.5506 | 0.1701 |
0.0061 | 91.0 | 12467 | 1.7180 | 0.0103 | 0.5576 | 0.1704 |
0.0057 | 92.0 | 12604 | 1.7489 | 0.0103 | 0.5521 | 0.1689 |
0.0057 | 93.0 | 12741 | 1.7571 | 0.0103 | 0.5537 | 0.1681 |
0.0058 | 94.0 | 12878 | 1.7497 | 0.0103 | 0.5517 | 0.1682 |
0.0057 | 95.0 | 13015 | 1.7382 | 0.0103 | 0.5477 | 0.1679 |
0.0054 | 96.0 | 13152 | 1.7279 | 0.0103 | 0.5491 | 0.1675 |
0.0055 | 97.0 | 13289 | 1.7383 | 0.0103 | 0.5500 | 0.1679 |
0.0052 | 98.0 | 13426 | 1.7410 | 0.0103 | 0.5484 | 0.1676 |
0.0054 | 99.0 | 13563 | 1.7224 | 0.0103 | 0.5484 | 0.1671 |
0.0051 | 100.0 | 13700 | 1.7312 | 0.0103 | 0.5507 | 0.1674 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.1.0+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for KasuleTrevor/wav2vec2-xls-r-300m-nyn_filtered-yogera-v1
Base model
facebook/wav2vec2-xls-r-300m