File size: 3,661 Bytes
67b62db 1fdfe74 67b62db 1fdfe74 67b62db 80938f5 db309bf 67b62db db309bf 67b62db 1327888 67b62db 3fcafea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
base_model: FacebookAI/xlm-roberta-large
language:
- th
tags:
- sequence-tagging
- aspect-based-sentiment
---
# XLM-RoBERTa-Large for Aspect-Based Sentiment Analysis
This is a fine-tuned [XLM-RoBERTa-Large](https://huggingface.co/FacebookAI/xlm-roberta-large) model for Aspect-Based Sentiment Analysis in Thai. The model is fine-tuned on a dataset specifically for the task of identifying sentiments related to specific aspects within sentences.

This model was the winning model in the Aspect-Based Sentiment Analysis competition of Super AI Engineer Season 4 - Hackathon Online. It achieved the best performance among all participating models, demonstrating its effectiveness in the given task.
## Model Description
XLM-RoBERTa is a large multilingual language model that has been fine-tuned for sequence tagging tasks. This model has been further fine-tuned for Aspect-Based Sentiment Analysis, making it suitable for applications that require understanding of sentiments expressed towards specific aspects within a text.
## Classes
The model can predict the following classes:
| ประเด็น | ป้ายกำกับเชิงบวก (Positive) | ป้ายกำกับเชิงลบ (Negative) |
|--------------------------|-------------------------------|--------------------------------|
| คุณภาพของสินค้า | Quality | NEG-Quality |
| ระยะเวลาที่ใช้ในการจัดส่ง | DeliveryTime | NEG-DeliveryTime |
| การบริการของร้านค้า | StoreService | NEG-StoreService |
| รูปลักษณ์ของสินค้า | Appearance | NEG-Appearance |
| การแพ็กสินค้า | Packaging | NEG-Packaging |
| ราคาของสินค้า | Price | NEG-Price |
| ขนาดของสินค้า | Size | NEG-Size |
| ไม่เกี่ยวข้องกับประเด็นที่สนใจ | O | |
## Usage
You can use this model for sequence tagging and aspect-based sentiment analysis in the Thai language. Here is a quick example of how to use it:
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Keetawan/xlm-roberta-large-aspect-based-sentiment")
model = AutoModelForTokenClassification.from_pretrained("Keetawan/xlm-roberta-large-aspect-based-sentiment")
nlp = pipeline("token-classification", model=model, tokenizer=tokenizer)
text = "ใส่ประโยคภาษาไทยที่ต้องการวิเคราะห์ที่นี่"
result = nlp(text)
for item in result:
print(item)
```
## Citation
If you use this model in your research or applications, please cite it as follows:
```
@misc{keetawan2024aspectsentiment,
author = {Keetawan Limaroon},
title = {XLM-RoBERTa-Large for Aspect-Based Sentiment Analysis in Thai},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/Keetawan/xlm-roberta-large-aspect-based-sentiment},
}
|