metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- crd3
metrics:
- rouge
model-index:
- name: primer-crd3
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: crd3
type: crd3
config: default
split: train[:500]
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.1510358452879352
primer-crd3
This model is a fine-tuned version of allenai/PRIMERA on the crd3 dataset. It achieves the following results on the evaluation set:
- Loss: 3.8193
- Rouge1: 0.1510
- Rouge2: 0.0279
- Rougel: 0.1251
- Rougelsum: 0.1355
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
No log | 1.0 | 250 | 2.9569 | 0.1762 | 0.0485 | 0.1525 | 0.1605 |
1.7993 | 2.0 | 500 | 3.4079 | 0.1612 | 0.0286 | 0.1367 | 0.1444 |
1.7993 | 3.0 | 750 | 3.8193 | 0.1510 | 0.0279 | 0.1251 | 0.1355 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.8.0
- Datasets 2.7.0
- Tokenizers 0.13.2