|
--- |
|
base_model: |
|
- tokyotech-llm/Llama-3.1-Swallow-8B-v0.1 |
|
- meta-llama/Llama-3.2-11B-Vision-Instruct |
|
- meta-llama/Llama-3.1-8B |
|
license: llama3.2 |
|
tags: |
|
- merge |
|
--- |
|
|
|
## Model Information |
|
|
|
Llama-3.2-11B-Vision-Instruct-Swallow-8B-Merge was created using Chat Vector to add Japanese language capability to Meta/Llama-3.2-11B-Vision-Instruct. |
|
|
|
Llama-3.2-11B-Vision-Instruct-Swallow-8B-Mergeは、Meta/Llama-3.2-11B-Vision-Instructに日本語能力を付加するためにChat Vectorを用いて作成されました。 |
|
|
|
### Detail |
|
|
|
https://zenn.dev/kendama/articles/280a4089cb8a72 |
|
|
|
## Recipe |
|
``` |
|
Llama-3.2-11B-Vision-Instruct + (Llama-3.1-Swallow-8B-v0.1 - Llama-3.1-8B) |
|
``` |
|
- Vision Model: [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) |
|
- Base Text Model: [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) |
|
- Japanese Text Model: [tokyotech-llm/Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) |
|
|
|
## License |
|
|
|
[Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) |
|
|
|
## How to use |
|
|
|
```python |
|
import requests |
|
import torch |
|
from PIL import Image |
|
from transformers import MllamaForConditionalGeneration, AutoProcessor |
|
|
|
model_id = "Kendamarron/Llama-3.2-11B-Vision-Instruct-Swallow-8B-Merge" |
|
|
|
model = MllamaForConditionalGeneration.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
messages = [ |
|
{"role": "user", "content": [ |
|
{"type": "image"}, |
|
{"type": "text", "text": "この画像で一句詠んでください。"} |
|
]} |
|
] |
|
input_text = processor.apply_chat_template(messages, add_generation_prompt=True) |
|
inputs = processor( |
|
image, |
|
input_text, |
|
add_special_tokens=False, |
|
return_tensors="pt" |
|
).to(model.device) |
|
|
|
output = model.generate(**inputs, max_new_tokens=30) |
|
print(processor.decode(output[0])) |
|
``` |