ppo-LunarLander-v2 / config.json
Kenemo's picture
more training steps
f42d704
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x1597a39a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1597a3a30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1597a3ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1597a3b50>", "_build": "<function ActorCriticPolicy._build at 0x1597a3be0>", "forward": "<function ActorCriticPolicy.forward at 0x1597a3c70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x1597a3d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1597a3d90>", "_predict": "<function ActorCriticPolicy._predict at 0x1597a3e20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1597a3eb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1597a3f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1597ac040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15979f100>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674585727478232000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa3Mr0puGe6BpoXtH8AYC8/aR46NH+rMwAAgD8AAIA/GvbGPZNwcj8uAEg+36M9vxUteD6a2RE+AAAAAAAAAAB1/YC+xombPwLjAL/pXAy/PWMcv4xelb4AAAAAAAAAALMJnD32PDm6rsX3NwLC4jJYo1q7gzwTtwAAgD8AAIA/TX+NPXb5F7y49Jq+0zXlvUnnAT0S7cm9AACAPwAAgD9zrsU9B26rPpNAB731Yy6/gVLDPWKS4LwAAAAAAAAAAIDAS74K5H8/uLvOvhRhEL/GUdy+A0WovgAAAAAAAAAAZiSMve9Abj2lk889bm7LvmoEAD2+mZY9AAAAAAAAAABmc+A9dKiKPkBehb66gxq/8J/SPctvab4AAAAAAAAAACAGTL7sY8M+xnsyPpBZFL8So6++mDxxPgAAAAAAAAAAzaMkPfa6eLxmeQG+4nUTvAx6+zrpAgq+AACAPwAAgD9NZTw9exScN/aTDTjdyBEzqnXvOnAkKLcAAIA/AACAP00rOr0UPso71g54PGbzc75z+4S9hiefvAAAAAAAAAAAWhPCvXsHhTvlgEQ+zTGtvZGL6DwSURu/AAAAAAAAgD8zg5u6P/KyPgZFCDrBmzy/CVgsO+UqYr0AAAAAAAAAAG1nAb7CW1k+ehrEPo+YJb+CYxc+UrqWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF2ahnRMMdECUhpRSlIwBbJRLvIwBdJRHQLLn0I/7iyZ1fZQoaAZoCWgPQwjAIypU9wpzQJSGlFKUaBVLq2gWR0Cy59R11W8zdX2UKGgGaAloD0MINbdCWA1fcUCUhpRSlGgVS7ZoFkdAsufUgntv43V9lChoBmgJaA9DCPdXj/vWW3FAlIaUUpRoFUuiaBZHQLLn26Uqx1R1fZQoaAZoCWgPQwi7KlCLwf8+QJSGlFKUaBVLWGgWR0Cy591urIYFdX2UKGgGaAloD0MIy2d5HtzQb0CUhpRSlGgVS5BoFkdAsufwggX/HnV9lChoBmgJaA9DCIL917mpeHFAlIaUUpRoFUuRaBZHQLLn8i+L3sZ1fZQoaAZoCWgPQwik374O3PxzQJSGlFKUaBVLoWgWR0Cy5/usPrfMdX2UKGgGaAloD0MIf/j578H8cUCUhpRSlGgVS5JoFkdAsuf99YwIt3V9lChoBmgJaA9DCIP26uPhtHFAlIaUUpRoFUuSaBZHQLLoCoESuhd1fZQoaAZoCWgPQwj5hsJnq0BzQJSGlFKUaBVLxWgWR0Cy6A5KFqSHdX2UKGgGaAloD0MII/PIH4yEcUCUhpRSlGgVS7BoFkdAsugVuJk5InV9lChoBmgJaA9DCP3dO2pMb3NAlIaUUpRoFUubaBZHQLLoGJhOP/91fZQoaAZoCWgPQwiJmBJJdF9wQJSGlFKUaBVLp2gWR0Cy6BpJTVDsdX2UKGgGaAloD0MI1IGsp9afcECUhpRSlGgVS6RoFkdAsugbYFqzq3V9lChoBmgJaA9DCF9CBYcXIHNAlIaUUpRoFUudaBZHQLLoJ655JK91fZQoaAZoCWgPQwgMy59vSw5xQJSGlFKUaBVLl2gWR0Cy6C6Mm4RVdX2UKGgGaAloD0MI39xfPa5zcUCUhpRSlGgVS7ZoFkdAsugxU3n6mHV9lChoBmgJaA9DCG3mkNQCgHNAlIaUUpRoFUuwaBZHQLLoMh2nsLR1fZQoaAZoCWgPQwj5vrhUJf5yQJSGlFKUaBVLvGgWR0Cy6EAB5ooNdX2UKGgGaAloD0MIZ5lFKLZmQkCUhpRSlGgVS1toFkdAsuhKMIeHSHV9lChoBmgJaA9DCCzzVl1Hv3FAlIaUUpRoFUunaBZHQLLoTFCb+cZ1fZQoaAZoCWgPQwiKH2Pu2vFyQJSGlFKUaBVLuWgWR0Cy6FSfUWl/dX2UKGgGaAloD0MImiSWlLvQcUCUhpRSlGgVS6ZoFkdAsuhVP0qYq3V9lChoBmgJaA9DCLYPecsVMXJAlIaUUpRoFUuqaBZHQLLoWXSSeRR1fZQoaAZoCWgPQwja44V0+JBwQJSGlFKUaBVLlWgWR0Cy6FqjFhoedX2UKGgGaAloD0MInNzvUBSSc0CUhpRSlGgVS6VoFkdAsuhtc8kleHV9lChoBmgJaA9DCCqLwi6K7G9AlIaUUpRoFUujaBZHQLLob0iQkop1fZQoaAZoCWgPQwgvMgG/RrNyQJSGlFKUaBVLqWgWR0Cy6HXRPXTWdX2UKGgGaAloD0MIUu3T8RgkckCUhpRSlGgVS5VoFkdAsuh/jo6jnHV9lChoBmgJaA9DCP8gkiGHYnNAlIaUUpRoFUvWaBZHQLLognjABT51fZQoaAZoCWgPQwgn+KbpMxFzQJSGlFKUaBVLrWgWR0Cy6IXYtg8bdX2UKGgGaAloD0MIfbCMDZ3PckCUhpRSlGgVS6FoFkdAsuiIr3CbdHV9lChoBmgJaA9DCEuwOJz5n09AlIaUUpRoFUtdaBZHQLLojViF0xN1fZQoaAZoCWgPQwiOHr+3afZxQJSGlFKUaBVLhWgWR0Cy6JIikftAdX2UKGgGaAloD0MIwhVQqOdUckCUhpRSlGgVS7RoFkdAsuiS1og3cnV9lChoBmgJaA9DCGtkV1oG+HBAlIaUUpRoFUugaBZHQLLoljiGWUt1fZQoaAZoCWgPQwifOetTDidlQJSGlFKUaBVN6ANoFkdAsuiie/YapHV9lChoBmgJaA9DCMjvbfpzBHRAlIaUUpRoFUunaBZHQLLoreGO+7F1fZQoaAZoCWgPQwhiFW9kHgFEQJSGlFKUaBVLV2gWR0Cy6K7W3BpIdX2UKGgGaAloD0MIlZwTeyhVc0CUhpRSlGgVS7poFkdAsuivYL9deXV9lChoBmgJaA9DCOQSRx5IyHJAlIaUUpRoFUvAaBZHQLLouMWGh251fZQoaAZoCWgPQwgdzCbAcF9zQJSGlFKUaBVLumgWR0Cy6LpYxL00dX2UKGgGaAloD0MIbk4lA0DZcECUhpRSlGgVS5toFkdAsui+cmShanV9lChoBmgJaA9DCG7ajNMQa25AlIaUUpRoFUuTaBZHQLLowAckt291fZQoaAZoCWgPQwiFBfcDnkdyQJSGlFKUaBVLi2gWR0Cy6MOpGWledX2UKGgGaAloD0MIndZtUDtMcUCUhpRSlGgVS69oFkdAsujFprULD3V9lChoBmgJaA9DCFk2c0jqNXFAlIaUUpRoFUucaBZHQLLoz9itq591fZQoaAZoCWgPQwheu7Th8IZwQJSGlFKUaBVLiGgWR0Cy6NH/xUeddX2UKGgGaAloD0MIMBNFSF0Qc0CUhpRSlGgVS6JoFkdAsujVPXTVlXV9lChoBmgJaA9DCLK9FvSeK3NAlIaUUpRoFUunaBZHQLLo4QSi/PB1fZQoaAZoCWgPQwgN/n4xW4JyQJSGlFKUaBVLuGgWR0Cy6OP7rLQpdX2UKGgGaAloD0MI0qxsH/LFcUCUhpRSlGgVS75oFkdAsujvXTVlPXV9lChoBmgJaA9DCE0tW+tL3nBAlIaUUpRoFUuraBZHQLLo8b83uNR1fZQoaAZoCWgPQwg3T3XIzdBDQJSGlFKUaBVLZGgWR0Cy6PQZXMhYdX2UKGgGaAloD0MIlnZqLjcUcUCUhpRSlGgVS6BoFkdAsuj3y3CsO3V9lChoBmgJaA9DCPevrDSpeHJAlIaUUpRoFUt+aBZHQLLo+dOIqLF1fZQoaAZoCWgPQwiN0Tqq2mNwQJSGlFKUaBVLk2gWR0Cy6PwEMb3odX2UKGgGaAloD0MIjspN1BLuckCUhpRSlGgVS65oFkdAsuj9eu3c6HV9lChoBmgJaA9DCK0Yrg6AEHNAlIaUUpRoFUvCaBZHQLLpB2L5ylx1fZQoaAZoCWgPQwiYvWw7reNzQJSGlFKUaBVLtmgWR0Cy6RHxe9i+dX2UKGgGaAloD0MIbXNjesLncUCUhpRSlGgVS6toFkdAsukSmO2iL3V9lChoBmgJaA9DCLqj/+VauXBAlIaUUpRoFUuKaBZHQLLpFc+aBqd1fZQoaAZoCWgPQwgtexLYnDxyQJSGlFKUaBVL02gWR0Cy6Rr0OEuhdX2UKGgGaAloD0MInigJiXSEcECUhpRSlGgVS6doFkdAsukduGbkO3V9lChoBmgJaA9DCFHdXPxtDXJAlIaUUpRoFUuNaBZHQLLpJZTyaux1fZQoaAZoCWgPQwiJQsu6vxtxQJSGlFKUaBVLlmgWR0Cy6ScIzFdcdX2UKGgGaAloD0MICI7LuKkYckCUhpRSlGgVS8BoFkdAsukra/RE4XV9lChoBmgJaA9DCOqu7ILBeXBAlIaUUpRoFUuJaBZHQLLpMx8UmD11fZQoaAZoCWgPQwghy4KJvyhzQJSGlFKUaBVLjmgWR0Cy6T9Qj2SMdX2UKGgGaAloD0MIpfYi2s7CcUCUhpRSlGgVS69oFkdAsulCznied3V9lChoBmgJaA9DCC0mNh8XsXJAlIaUUpRoFUuqaBZHQLLpTCCSRr91fZQoaAZoCWgPQwg7Vik9E05xQJSGlFKUaBVLsmgWR0Cy6U41xbSrdX2UKGgGaAloD0MI7Es2Hiw7c0CUhpRSlGgVS8FoFkdAsulPZ6D5CXV9lChoBmgJaA9DCIviVda2mHJAlIaUUpRoFUu5aBZHQLLpWCF9KEp1fZQoaAZoCWgPQwithsQ9lldzQJSGlFKUaBVLpmgWR0Cy6VobOu7pdX2UKGgGaAloD0MI/N6mP/vZc0CUhpRSlGgVS5xoFkdAsulgl9jPOnV9lChoBmgJaA9DCKxY/KawW3NAlIaUUpRoFUuhaBZHQLLpbHerMkh1fZQoaAZoCWgPQwhkrgyqDWtzQJSGlFKUaBVLtGgWR0Cy6Wxp1zQvdX2UKGgGaAloD0MI8lzfhwNqc0CUhpRSlGgVS65oFkdAsultk078vXV9lChoBmgJaA9DCKDDfHnB7XNAlIaUUpRoFUuoaBZHQLLpcox59mZ1fZQoaAZoCWgPQwjRdkzdlblxQJSGlFKUaBVLimgWR0Cy6XqErXlKdX2UKGgGaAloD0MIB9Fa0SYVc0CUhpRSlGgVS6JoFkdAsul+V9nbqXV9lChoBmgJaA9DCCNm9nnMDnJAlIaUUpRoFUutaBZHQLLpfx9G7SR1fZQoaAZoCWgPQwiAuKtXUWZyQJSGlFKUaBVLsWgWR0Cy6X+wPiDNdX2UKGgGaAloD0MIu/HuyFhtc0CUhpRSlGgVS6loFkdAsumUC6pYLnV9lChoBmgJaA9DCGFUUidgW3NAlIaUUpRoFUuuaBZHQLLpmcebNKR1fZQoaAZoCWgPQwh0mZoE731xQJSGlFKUaBVLpGgWR0Cy6Z/029+PdX2UKGgGaAloD0MIfPDapU3LcUCUhpRSlGgVS6hoFkdAsumg4hllLHV9lChoBmgJaA9DCAVqMXhYyXFAlIaUUpRoFUuvaBZHQLLpoo5PuXx1fZQoaAZoCWgPQwh3E3zTdAZyQJSGlFKUaBVLnGgWR0Cy6aQ7cO9WdX2UKGgGaAloD0MIIXU7+0qOcECUhpRSlGgVS5loFkdAsumkkdFOPHV9lChoBmgJaA9DCCwOZ3511XBAlIaUUpRoFUuNaBZHQLLpropQUHp1fZQoaAZoCWgPQwjWc9L7hjxyQJSGlFKUaBVLk2gWR0Cy6bIp6QeWdX2UKGgGaAloD0MIGY18XrEcckCUhpRSlGgVS5loFkdAsum0AfdRBXV9lChoBmgJaA9DCFbUYBqGcHNAlIaUUpRoFUu1aBZHQLLptiKziS91fZQoaAZoCWgPQwgPt0PD4jlvQJSGlFKUaBVLj2gWR0Cy6bxwl0HRdX2UKGgGaAloD0MIM6SK4tVacECUhpRSlGgVS7FoFkdAsunEz/IbO3V9lChoBmgJaA9DCMxCO6dZT3FAlIaUUpRoFUudaBZHQLLpx1V5rxl1fZQoaAZoCWgPQwhYIHpS5rZzQJSGlFKUaBVLnmgWR0Cy6cdBF/hEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}