StarlingBeagle-dare / README.md
Knobi3's picture
Update README.md
5de0230 verified
---
tags:
- merge
- mergekit
- lazymergekit
- AI-Sweden-Models/tyr
- mlabonne/NeuralBeagle14-7B
- neph1/bellman-7b-mistral-instruct-v0.2
base_model:
- AI-Sweden-Models/tyr
- mlabonne/NeuralBeagle14-7B
- neph1/bellman-7b-mistral-instruct-v0.2
---
# StarlingBeagle-dare-ties
NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [AI-Sweden-Models/tyr](https://huggingface.co/AI-Sweden-Models/tyr)
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
* [neph1/bellman-7b-mistral-instruct-v0.2](https://huggingface.co/neph1/bellman-7b-mistral-instruct-v0.2)
## 🧩 Configuration
```yaml
models:
- model: Nexusflow/Starling-LM-7B-beta
# No parameters necessary for base model
- model: AI-Sweden-Models/tyr
parameters:
density: 0.53
weight: 0.4
- model: mlabonne/NeuralBeagle14-7B
parameters:
density: 0.53
weight: 0.3
- model: neph1/bellman-7b-mistral-instruct-v0.2
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: Nexusflow/Starling-LM-7B-beta
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "knobi3/NeuralPipe-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```