HW2-orpo

This model is a fine-tuned version of openai-community/gpt2 on the piqa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8617
  • Rewards/chosen: -0.3716
  • Rewards/rejected: -0.3885
  • Rewards/accuracies: 0.6390
  • Rewards/margins: 0.0170
  • Logps/rejected: -3.8851
  • Logps/chosen: -3.7156
  • Logits/rejected: -3.3968
  • Logits/chosen: -3.5059
  • Nll Loss: 3.7885
  • Log Odds Ratio: -0.7324
  • Log Odds Chosen: 0.1830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
3.5511 0.2758 500 3.4162 -0.3146 -0.3224 0.6303 0.0078 -3.2238 -3.1457 -12.1919 -12.3316 3.3464 -0.6978 0.0837
3.3852 0.5517 1000 3.3345 -0.3060 -0.3152 0.6421 0.0092 -3.1517 -3.0602 -3.3351 -3.5024 3.2656 -0.6894 0.0984
3.2734 0.8275 1500 3.2903 -0.3011 -0.3101 0.6309 0.0090 -3.1013 -3.0113 -5.6602 -5.7320 3.2211 -0.6920 0.0975
3.104 1.1034 2000 3.2933 -0.3021 -0.3118 0.6371 0.0097 -3.1182 -3.0211 -0.2253 -0.3135 3.2237 -0.6956 0.1062
2.8138 1.3792 2500 3.2816 -0.3018 -0.3125 0.6464 0.0107 -3.1253 -3.0179 1.3216 1.2346 3.2125 -0.6916 0.1172
2.8178 1.6551 3000 3.2660 -0.2998 -0.3108 0.6383 0.0109 -3.1080 -2.9985 -0.7475 -0.8064 3.1968 -0.6923 0.1204
2.8122 1.9309 3500 3.2586 -0.2992 -0.3104 0.6433 0.0112 -3.1039 -2.9922 -2.8285 -2.9509 3.1893 -0.6925 0.1228
2.4931 2.2067 4000 3.3765 -0.3130 -0.3256 0.6427 0.0127 -3.2563 -3.1296 1.6707 1.5380 3.3063 -0.7020 0.1392
2.3999 2.4826 4500 3.4109 -0.3174 -0.3298 0.6402 0.0125 -3.2982 -3.1736 1.4695 1.2634 3.3402 -0.7069 0.1373
2.4254 2.7584 5000 3.3882 -0.3150 -0.3278 0.6439 0.0128 -3.2781 -3.1497 2.1282 1.9044 3.3180 -0.7018 0.1416
2.373 3.0343 5500 3.5698 -0.3370 -0.3515 0.6408 0.0145 -3.5149 -3.3698 3.7150 3.6601 3.4983 -0.7147 0.1595
2.0541 3.3101 6000 3.6256 -0.3430 -0.3570 0.6284 0.0140 -3.5700 -3.4302 1.1269 0.9714 3.5532 -0.7240 0.1540
2.0641 3.5860 6500 3.6157 -0.3425 -0.3577 0.6445 0.0152 -3.5771 -3.4246 -0.6703 -0.8165 3.5439 -0.7178 0.1665
2.0747 3.8618 7000 3.6335 -0.3447 -0.3598 0.6402 0.0151 -3.5983 -3.4474 -0.1967 -0.3291 3.5616 -0.7193 0.1640
1.9377 4.1376 7500 3.8286 -0.3671 -0.3838 0.6445 0.0167 -3.8381 -3.6712 -2.6871 -2.8058 3.7557 -0.7288 0.1800
1.8001 4.4135 8000 3.8629 -0.3715 -0.3882 0.6414 0.0168 -3.8822 -3.7146 -3.4193 -3.5370 3.7898 -0.7315 0.1810
1.81 4.6893 8500 3.8574 -0.3711 -0.3879 0.6396 0.0168 -3.8789 -3.7110 -4.2176 -4.3406 3.7842 -0.7321 0.1814
1.8108 4.9652 9000 3.8617 -0.3716 -0.3885 0.6390 0.0170 -3.8851 -3.7156 -3.3968 -3.5059 3.7885 -0.7324 0.1830

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for KoNqUeRoR3891/HW2-orpo

Finetuned
(1285)
this model

Dataset used to train KoNqUeRoR3891/HW2-orpo