deberta-base-japanese-unidic-ud-head
Model Description
This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from deberta-base-japanese-unidic and UD_Japanese-GSDLUW. Use [MASK] inside context
to avoid ambiguity when specifying a multiple-used word as question
.
How to Use
import torch
from transformers import AutoTokenizer,AutoModelForQuestionAnswering
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-ud-head")
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-base-japanese-unidic-ud-head")
question="国語"
context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
inputs=tokenizer(question,context,return_tensors="pt")
outputs=model(**inputs)
start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits)
print(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0,start:end+1]))
or
from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
class TaggerPipeline(TokenClassificationPipeline):
def __call__(self,text):
d=super().__call__(text)
if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None):
import spacy_alignments as tokenizations
v=[x["word"].replace(" ","") for x in d]
a2b,b2a=tokenizations.get_alignments(v,text)
for i,t in enumerate(a2b):
s,e=(0,0) if t==[] else (t[0],t[-1]+1)
if v[i].startswith(self.tokenizer.unk_token):
s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1
if v[i].endswith(self.tokenizer.unk_token):
e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0]
d[i]["start"],d[i]["end"]=s,e
return d
class TransformersSlowUD(object):
def __init__(self,bert):
import os
self.tokenizer=AutoTokenizer.from_pretrained(bert)
self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
x=AutoModelForTokenClassification.from_pretrained
if os.path.isdir(bert):
d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
else:
from transformers.utils import cached_file
c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json"))
d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c)
s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json"))
t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s)
self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer,
aggregation_strategy="simple")
self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer)
def __call__(self,text):
import numpy,torch,ufal.chu_liu_edmonds
w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
for i,t in enumerate(v):
q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
with torch.no_grad():
d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
s,e=d.start_logits.tolist(),d.end_logits.tolist()
for i in range(n):
for j in range(n):
m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
if [0 for i in h if i==0]!=[0]:
i=([p for s,e,p in w]+["root"]).index("root")
j=i+1 if i<n else numpy.nanargmax(m[:,0])
m[0:j,0]=m[j+1:,0]=numpy.nan
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
u="# text = "+text.replace("\n"," ")+"\n"
for i,(s,e,p) in enumerate(w,1):
p="root" if h[i]==0 else "dep" if p=="root" else p
u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n"
return u+"\n"
nlp=TransformersSlowUD("KoichiYasuoka/deberta-base-japanese-unidic-ud-head")
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
fugashi unidic-lite spacy-alignments required.
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for KoichiYasuoka/deberta-base-japanese-unidic-ud-head
Base model
KoichiYasuoka/deberta-base-japanese-unidic