KoichiYasuoka's picture
without ufal.chu-liu.edmonds
8cebe88
|
raw
history blame
876 Bytes
---
language:
- "zh"
tags:
- "chinese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/deberta-large-chinese-erlangshen-upos
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
---
# deberta-large-chinese-erlangshen-ud-goeswith
## Model Description
This is a DeBERTa(V2) model pre-trained on Chinese texts (both simplified and traditional) for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-large-chinese-erlangshen-upos](https://huggingface.co/KoichiYasuoka/deberta-large-chinese-erlangshen-upos).
## How to Use
```py
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("我把这本书看完了"))
```