|
--- |
|
datasets: |
|
- KomeijiForce/Text2Emoji |
|
language: |
|
- en |
|
metrics: |
|
- bertscore |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
# EmojiLM |
|
|
|
This is a [BART](https://huggingface.co/facebook/bart-large) model pre-trained on the [Text2Emoji](https://huggingface.co/datasets/KomeijiForce/Text2Emoji) dataset to translate setences into series of emojis. |
|
|
|
For instance, "I love pizza" will be translated into "ππ". |
|
|
|
An example implementation for translation: |
|
|
|
```python |
|
from transformers import BartTokenizer, BartForConditionalGeneration |
|
|
|
def translate(sentence, **argv): |
|
inputs = tokenizer(sentence, return_tensors="pt") |
|
generated_ids = generator.generate(inputs["input_ids"], **argv) |
|
decoded = tokenizer.decode(generated_ids[0], skip_special_tokens=True).replace(" ", "") |
|
return decoded |
|
|
|
path = "KomeijiForce/bart-large-emojilm" |
|
tokenizer = BartTokenizer.from_pretrained(path) |
|
generator = BartForConditionalGeneration.from_pretrained(path) |
|
|
|
sentence = "I love the weather in Alaska!" |
|
decoded = translate(sentence, num_beams=4, do_sample=True, max_length=100) |
|
print(decoded) |
|
``` |
|
|
|
You will probably get some output like "βοΈποΈπ". |
|
|
|
If you find this model & dataset resource useful, please consider cite our paper: |
|
|
|
``` |
|
@article{DBLP:journals/corr/abs-2311-01751, |
|
author = {Letian Peng and |
|
Zilong Wang and |
|
Hang Liu and |
|
Zihan Wang and |
|
Jingbo Shang}, |
|
title = {EmojiLM: Modeling the New Emoji Language}, |
|
journal = {CoRR}, |
|
volume = {abs/2311.01751}, |
|
year = {2023}, |
|
url = {https://doi.org/10.48550/arXiv.2311.01751}, |
|
doi = {10.48550/ARXIV.2311.01751}, |
|
eprinttype = {arXiv}, |
|
eprint = {2311.01751}, |
|
timestamp = {Tue, 07 Nov 2023 18:17:14 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2311-01751.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |