|
--- |
|
language: |
|
- en |
|
base_model: |
|
- black-forest-labs/FLUX.1-Kontext-dev |
|
pipeline_tag: image-to-image |
|
library_name: diffusers |
|
tags: |
|
- Style |
|
- Snoopy |
|
- FluxKontext |
|
- Image-to-Image |
|
--- |
|
|
|
# Snoopy Style LoRA for FLUX.1 Kontext Model |
|
This repository provides the **Snoopy** style LoRA adapter for the [FLUX.1 Kontext Model](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev). |
|
This LoRA is part of a collection of 20+ style LoRAs trained on high-quality paired data generated by GPT-4o from the [OmniConsistency](https://huggingface.co/datasets/showlab/OmniConsistency) dataset. |
|
|
|
 |
|
 |
|
|
|
Contributor: Tian YE & Song FEI, HKUST Guangzhou. |
|
|
|
## Style Showcase |
|
Here are some examples of images generated using this style LoRA: |
|
|
|
 |
|
 |
|
 |
|
 |
|
 |
|
 |
|
|
|
## Inference Example |
|
```python |
|
from huggingface_hub import hf_hub_download |
|
from diffusers import FluxKontextPipeline |
|
from diffusers.utils import load_image |
|
import torch |
|
|
|
# Define the style and model details |
|
STYLE_NAME = "Snoopy" |
|
LORA_FILENAME = "Snoopy_lora_weights.safetensors" |
|
REPO_ID = "Kontext-Style/Snoopy_lora" |
|
|
|
# Download the LoRA weights |
|
# Make sure you have created a folder named 'LoRAs' in your current directory |
|
hf_hub_download(repo_id=REPO_ID, filename=LORA_FILENAME, local_dir="./LoRAs") |
|
|
|
# Load an image |
|
image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024)) |
|
|
|
# Load the pipeline |
|
pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to('cuda') |
|
|
|
# Load and set the LoRA adapter |
|
pipeline.load_lora_weights(f"./LoRAs/{LORA_FILENAME}", adapter_name="lora") |
|
pipeline.set_adapters(["lora"], adapter_weights=[1]) |
|
|
|
# Run inference |
|
prompt = f"Turn this image into the {STYLE_NAME.replace('_', ' ')} style." |
|
result_image = pipeline(image=image, prompt=prompt, height=1024, width=1024, num_inference_steps=24).images[0] |
|
result_image.save(f"{STYLE_NAME}.png") |
|
|
|
print(f"Image saved as {STYLE_NAME}.png") |
|
``` |
|
|
|
Feel free to open an issue or contact us for feedback or collaboration! |
|
|