metadata
license: llama3
library_name: transformers
tags:
- axolotl
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: L3-Pneuma-8B
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3-8B
load_in_8bit: false
load_in_4bit: false
strict: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Kquant03/Sandevistan_Reformat
type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out
max_steps: 80000
fix_untrained_tokens: true
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
wandb_project: Pneuma
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00001
max_grad_norm: 1
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
hub_model_id: Replete-AI/L3-Pneuma-8B
hub_strategy: every_save
warmup_steps: 10
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
tokens:
L3-Pneuma-8B
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the Sandevistan dataset. It achieves the following results on the evaluation set:
- Loss: 2.7381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 743
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0378 | 0.0013 | 1 | 3.0437 |
0.6816 | 0.3334 | 248 | 2.7341 |
0.6543 | 0.6667 | 496 | 2.7381 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 16.57 |
IFEval (0-Shot) | 23.74 |
BBH (3-Shot) | 28.82 |
MATH Lvl 5 (4-Shot) | 4.76 |
GPQA (0-shot) | 7.61 |
MuSR (0-shot) | 10.21 |
MMLU-PRO (5-shot) | 24.27 |