|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-base-cnn_dailymail |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
config: 3.0.0 |
|
split: test |
|
args: 3.0.0 |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 24.6545 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-base-cnn_dailymail |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8013 |
|
- Rouge1: 24.6545 |
|
- Rouge2: 11.7282 |
|
- Rougel: 20.3578 |
|
- Rougelsum: 23.1966 |
|
- Gen Len: 18.9989 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.0058 | 1.0 | 17945 | 1.8259 | 24.6279 | 11.6692 | 20.3361 | 23.1875 | 18.9988 | |
|
| 1.97 | 2.0 | 35890 | 1.8158 | 24.6935 | 11.7554 | 20.4015 | 23.2584 | 18.9985 | |
|
| 1.962 | 3.0 | 53835 | 1.8095 | 24.6151 | 11.7178 | 20.3361 | 23.1781 | 18.9993 | |
|
| 1.9551 | 4.0 | 71780 | 1.8040 | 24.6127 | 11.7364 | 20.3473 | 23.17 | 18.9989 | |
|
| 1.9515 | 5.0 | 89725 | 1.8013 | 24.6545 | 11.7282 | 20.3578 | 23.1966 | 18.9989 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|