phi-3-mini-LoRA-MEDQA-Extended-V2
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6515
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7812 | 0.2205 | 100 | 0.6948 |
0.6796 | 0.4410 | 200 | 0.6695 |
0.6687 | 0.6615 | 300 | 0.6632 |
0.662 | 0.8820 | 400 | 0.6599 |
0.6603 | 1.1025 | 500 | 0.6579 |
0.6587 | 1.3230 | 600 | 0.6568 |
0.6539 | 1.5436 | 700 | 0.6553 |
0.6552 | 1.7641 | 800 | 0.6540 |
0.6542 | 1.9846 | 900 | 0.6537 |
0.6501 | 2.2051 | 1000 | 0.6526 |
0.6523 | 2.4256 | 1100 | 0.6521 |
0.6527 | 2.6461 | 1200 | 0.6517 |
0.6502 | 2.8666 | 1300 | 0.6515 |
Framework versions
- PEFT 0.12.0
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for KrithikV/phi-3-mini-LoRA-MEDQA-Extended-V2
Base model
microsoft/Phi-3-mini-4k-instruct