Jupiter-k-7B-slerp ( My Favorite model! )
Jupiter-k-7B-slerp is a merge of the following models using LazyMergekit:
𧩠Configuration
models:
- model: Kukedlc/NeuralContamination-7B-ties
parameters:
density: [1, 0.7, 0.1] # density gradient
weight: 1.0
- model: Kukedlc/NeuralTopBench-7B-ties
parameters:
density: 0.5
weight: [0, 0.3, 0.7, 1] # weight gradient
- model: Gille/StrangeMerges_32-7B-slerp
parameters:
density: 0.33
weight:
- filter: mlp
value: 0.5
- value: 0
merge_method: ties
base_model: Kukedlc/NeuralMaxime-7B-slerp
parameters:
normalize: true
int8_mask: true
dtype: bfloat16
π» Usage - Stream
# Requirements
!pip install -qU transformers accelerate bitsandbytes
# Imports & settings
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
warnings.filterwarnings('ignore')
# Model & Tokenizer
MODEL_NAME = "Kukedlc/Jupiter-k-7B-slerp"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:1', load_in_4bit=True)
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
# Inference
prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness"
inputs = tok([prompt], return_tensors="pt").to('cuda')
streamer = TextStreamer(tok)
# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7)
π» Usage - Clasic
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Jupiter-k-7B-slerp"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 218
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.