NeuralStockFusion-7b

image/webp

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the Model Stock merge method using Kukedlc/NeuralSirKrishna-7b as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: Kukedlc/NeuralMaths-Experiment-7b
  - model: Kukedlc/NeuralArjuna-7B-DT
  - model: Kukedlc/NeuralSirKrishna-7b
  - model: Kukedlc/NeuralSynthesis-7B-v0.1
merge_method: model_stock
base_model: Kukedlc/NeuralSirKrishna-7b
dtype: bfloat16

Model Inference:

!pip install -qU transformers accelerate bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

MODEL_NAME = 'Kukedlc/NeuralStockFusion-7b'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)

inputs = tokenizer(["[INST] What is a large language model, in spanish \n[/INST]\n"], return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)

# Despite returning the usual output, the streamer will also print the generated text to stdout.
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=256, do_sample=True, temperature=0.7, repetition_penalty=1.4, top_p=0.9)
Downloads last month
20
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kukedlc/NeuralStockFusion-7b