CS221-BantuBERTa-vmw-finetuned-finetuned-vmw-tapt
This model is a fine-tuned version of Kuongan/BantuBERTa-vmw-finetuned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0828
- F1: 0.7618
- Roc Auc: 0.8503
- Accuracy: 0.8628
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.1273 | 1.0 | 102 | 0.0930 | 0.6783 | 0.7966 | 0.8676 |
0.1063 | 2.0 | 204 | 0.0969 | 0.6949 | 0.8078 | 0.8405 |
0.0959 | 3.0 | 306 | 0.0872 | 0.7100 | 0.8278 | 0.8533 |
0.072 | 4.0 | 408 | 0.0841 | 0.7269 | 0.8313 | 0.8612 |
0.0502 | 5.0 | 510 | 0.0917 | 0.7242 | 0.8577 | 0.8405 |
0.0397 | 6.0 | 612 | 0.0828 | 0.7618 | 0.8503 | 0.8628 |
0.031 | 7.0 | 714 | 0.0922 | 0.7111 | 0.8222 | 0.8517 |
0.0259 | 8.0 | 816 | 0.0926 | 0.7464 | 0.8428 | 0.8437 |
0.022 | 9.0 | 918 | 0.0901 | 0.7537 | 0.8345 | 0.8565 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support