CS221-BantuBERTa-vmw-noaug-finetuned-vmw-tapt
This model is a fine-tuned version of Kuongan/BantuBERTa-vmw-noaug on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2460
- F1: 0.0
- Roc Auc: 0.5
- Accuracy: 0.5977
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.2591 | 1.0 | 65 | 0.2460 | 0.0 | 0.5 | 0.5977 |
0.2261 | 2.0 | 130 | 0.2439 | 0.0 | 0.5 | 0.5977 |
0.2091 | 3.0 | 195 | 0.2425 | 0.0 | 0.5 | 0.5977 |
0.2231 | 4.0 | 260 | 0.2417 | 0.0 | 0.5 | 0.5977 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.