cs221-deberta-v3-large-eng-pt
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3691
- F1: 0.7676
- Roc Auc: 0.8216
- Accuracy: 0.6034
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4687 | 1.0 | 173 | 0.4601 | 0.4113 | 0.6309 | 0.3103 |
0.3504 | 2.0 | 346 | 0.3652 | 0.6879 | 0.7645 | 0.4397 |
0.2659 | 3.0 | 519 | 0.3636 | 0.7057 | 0.7616 | 0.4397 |
0.1696 | 4.0 | 692 | 0.3691 | 0.7676 | 0.8216 | 0.6034 |
0.1001 | 5.0 | 865 | 0.4142 | 0.7647 | 0.8246 | 0.5172 |
0.0699 | 6.0 | 1038 | 0.4698 | 0.7530 | 0.8034 | 0.4828 |
0.049 | 7.0 | 1211 | 0.5140 | 0.7219 | 0.7911 | 0.5 |
0.0253 | 8.0 | 1384 | 0.5917 | 0.7603 | 0.8191 | 0.5345 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Kuongan/cs221-deberta-v3-large-eng-pt
Base model
microsoft/deberta-v3-large