Edit model card

vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter

This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3278
  • Accuracy: 0.8519
  • Recall: 0.8519
  • F1: 0.8508
  • Precision: 0.8576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 1.0 1175 0.5572 0.8076 0.8076 0.7937 0.8043
No log 2.0 2350 0.4673 0.8284 0.8284 0.8271 0.8347
No log 3.0 3525 0.4109 0.8344 0.8344 0.8301 0.8367
No log 4.0 4700 0.3984 0.8382 0.8382 0.8339 0.8375
No log 5.0 5875 0.3886 0.8412 0.8412 0.8398 0.8467
No log 6.0 7050 0.3520 0.8493 0.8493 0.8481 0.8519
No log 7.0 8225 0.4229 0.8416 0.8416 0.8399 0.8512
No log 8.0 9400 0.3140 0.8612 0.8612 0.8600 0.8656
No log 9.0 10575 0.3399 0.8421 0.8421 0.8403 0.8464
0.4263 10.0 11750 0.3399 0.8476 0.8476 0.8468 0.8536

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kushagra07/vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter

Finetuned
(497)
this model

Evaluation results