Kushtrim's picture
Upload tokenizer
0cb55ef verified
metadata
library_name: transformers
language:
  - sq
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - Kushtrim/audioshqip
metrics:
  - wer
model-index:
  - name: Whisper Base Shqip
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Audio Shqip 97 orë
          type: Kushtrim/audioshqip
          args: 'config: sq, split: test'
        metrics:
          - type: wer
            value: 40.143396979133186
            name: Wer

Whisper Base Shqip

This model is a fine-tuned version of openai/whisper-base on the Audio Shqip 97 orë dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5274
  • Wer: 40.1434

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0357 0.3249 500 1.0437 70.9649
0.7862 0.6498 1000 0.7759 57.9971
0.6561 0.9747 1500 0.6805 51.6728
0.5704 1.2995 2000 0.6337 49.0896
0.5511 1.6244 2500 0.5968 47.4252
0.522 1.9493 3000 0.5740 47.2168
0.4252 2.2742 3500 0.5612 43.5865
0.4411 2.5991 4000 0.5487 43.2817
0.4434 2.9240 4500 0.5373 43.3737
0.3791 3.2489 5000 0.5353 42.3143
0.371 3.5737 5500 0.5297 41.3114
0.4173 3.8986 6000 0.5231 41.4012
0.3009 4.2235 6500 0.5276 40.9756
0.3337 4.5484 7000 0.5249 40.4393
0.3145 4.8733 7500 0.5222 40.2154
0.2897 5.1982 8000 0.5264 40.4925
0.2717 5.5231 8500 0.5256 40.6387
0.2947 5.8480 9000 0.5251 40.2753
0.2933 6.1728 9500 0.5268 40.5601
0.2644 6.4977 10000 0.5274 40.1434

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3