Kushtrim's picture
Upload tokenizer
e2717a9 verified
|
raw
history blame
2.31 kB
metadata
language:
  - sq
license: apache-2.0
library_name: transformers
tags:
  - generated_from_trainer
base_model: openai/whisper-medium
datasets:
  - Kushtrim/common_voice_19_sq
metrics:
  - wer
model-index:
  - name: Whisper Medium SQ
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 19.0
          type: Kushtrim/common_voice_19_sq
          args: 'config: sq, split: test'
        metrics:
          - type: wer
            value: 7.322033898305085
            name: Wer

Whisper Medium SQ

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 19.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0979
  • Wer: 7.3220

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5161 0.4237 250 0.4949 38.8136
0.3207 0.8475 500 0.3084 29.4689
0.1595 1.2712 750 0.2255 21.6949
0.1239 1.6949 1000 0.1733 16.4859
0.0488 2.1186 1250 0.1338 13.0847
0.04 2.5424 1500 0.1188 10.8136
0.0241 2.9661 1750 0.1023 8.7684
0.0075 3.3898 2000 0.1022 8.1695
0.0065 3.8136 2250 0.0979 7.3220

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1