SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'<s>западни държави are involved in actiom that align With the roles of individuals or groups initiating conflict and entitie causing harm through ignorance lack of skill or incompetence the entity is participating in Conference peace in switzerland Which indicate role in plotting and secret plans to undermine others but it also implie involvement in covert activitie additionally their participation in hit Against The russian federation suggests role in initiating Conflict and provoking Violence stated by russian president vladimir putinr</s><s>западни държави</s><s>anger</s><s>disgust</s>',
'Entities from other nations or regions creating geopolitical tension and acting against the interests of another country. They are often depicted as threats to national security. This is mostly in politics, not in CC.',
'Entities causing harm through ignorance, lack of skill, or incompetence. This includes people committing foolish acts or making poor decisions due to lack of understanding or expertise. Their actions, often unintentional, result in significant negative consequences.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,142 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 30 tokens
- mean: 138.53 tokens
- max: 359 tokens
- min: 31 tokens
- mean: 48.24 tokens
- max: 97 tokens
- min: 31 tokens
- mean: 47.84 tokens
- max: 97 tokens
- Samples:
sentence_0 sentence_1 sentence_2 the entity вашингтон Washington is involved in actiom that align With the role of individuals Who betray Cause or country often seen disloyal and treacherous their actiom are viewed significant breach of trust in thi context Washington is being accused of Manipulating public perception and deceiving People about the causes of climate changir using fear and Propaganda to control other and gain power thi behavior is seen betrayal of the public trust in their leader and institutions the entity вашингтон is Not directly causing harm through ignorance or incompetence but rather engaging in deliberate actiom to deceive and manipulate others personal gainвашингтонangerdisgustfearDeceivers, manipulators, or propagandists who twist the truth, spread misinformation, and manipulate public perception for their own benefit. They undermine trust and truth.
: Individuals or groups initiating conflict, often seen as the primary cause of tension and discord. They may provoke violence or unrest.
the entity санду refer to an individual involved in actiom that may be perceived undermining national security specifically their role is related to the west support ther marionette in moldova further Escalating tensions between Russia and ukraine thi context suggests involvement in covert activitie or manipulatiom that might align With the roles of those involved in plots and secret plans or deceiver manipulator or propagandists who twist the truthсандуangerdisgustIndividuals or entities that engage in unethical or illegal activities for personal gain, prioritizing profit or power over ethics. This includes corrupt politicians, business leaders, and officials.
Individuals accused of hostility or discrimination against specific groups. This includes entities committing acts falling under racism, sexism, homophobia, Antisemitism, Islamophobia, or any kind of hate speech. This is mostly in politics, not in CC.
the entity запада west is involved in conflict with another region Referred to глобален юг global South Where Countries that werir previously under Western influencer are now Seeking to reassert their independence and return to the international arena the west is de escribed being at odds With thi shift and its actiom are Seen an attempt to Maintain control over these regions thi raises questiom about The morality of proxy wars and the expansion of divisions between the west and other parts of the WorldзападаangerTyrants and corrupt officials who abuse their power, ruling unjustly and oppressing those under their control. They are often characterized by their authoritarian rule and exploitation.
Spies or double agents accused of espionage, gathering and transmitting sensitive information to a rival or enemy. They operate in secrecy and deception. This is mostly in politics, not in CC.
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 6multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 6max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
1.3021 | 500 | 4.3796 |
2.6042 | 1000 | 2.6175 |
3.9062 | 1500 | 1.9542 |
5.2083 | 2000 | 1.3459 |
Framework Versions
- Python: 3.9.20
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.