conette / README.md
Labbeti's picture
Upload README.md with huggingface_hub
86a524c
|
raw
history blame
5.23 kB
---
language: en
license: mit
tags:
- audio
- captioning
- text
- audio-captioning
- automated-audio-captioning
model_name: CoNeTTE
task_categories:
- audio-captioning
---
<div align="center">
# CoNeTTE model source
<a href="https://www.python.org/"><img alt="Python" src="https://img.shields.io/badge/-Python 3.10+-blue?style=for-the-badge&logo=python&logoColor=white"></a><a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/-PyTorch 1.10.1+-ee4c2c?style=for-the-badge&logo=pytorch&logoColor=white"></a><a href="https://black.readthedocs.io/en/stable/"><img alt="Code style: black" src="https://img.shields.io/badge/code%20style-black-black.svg?style=for-the-badge&labelColor=gray"></a>
<a href="https://github.com/Labbeti/conette-audio-captioning/actions">
<img alt="Build" src="https://img.shields.io/github/actions/workflow/status/Labbeti/conette-audio-captioning/python-package-pip.yaml?branch=main&style=for-the-badge&logo=github">
</a>
<!-- <a href='https://aac-metrics.readthedocs.io/en/stable/?badge=stable'>
<img src='https://readthedocs.org/projects/aac-metrics/badge/?version=stable&style=for-the-badge' alt='Documentation Status' />
</a> -->
CoNeTTE is an audio captioning system, which generate a short textual description of the sound events in any audio file.
</div>
CoNeTTE has been developped by me ([Étienne Labbé](https://labbeti.github.io/)) during my PhD. CoNeTTE stands for ConvNeXt-Transformer model with Task Embedding, and the architecture and training is explained in the corresponding [paper](https://arxiv.org/pdf/2309.00454.pdf).
## Installation
```bash
python -m pip install conette
python -m spacy download en_core_web_sm
```
## Usage with python
```py
from conette import CoNeTTEConfig, CoNeTTEModel
config = CoNeTTEConfig.from_pretrained("Labbeti/conette")
model = CoNeTTEModel.from_pretrained("Labbeti/conette", config=config)
path = "/your/path/to/audio.wav"
outputs = model(path)
candidate = outputs["cands"][0]
print(candidate)
```
The model can also accept several audio files at the same time (list[str]), or a list of pre-loaded audio files (list[Tensor]). In this second case you also need to provide the sampling rate of this files:
```py
import torchaudio
path_1 = "/your/path/to/audio_1.wav"
path_2 = "/your/path/to/audio_2.wav"
audio_1, sr_1 = torchaudio.load(path_1)
audio_2, sr_2 = torchaudio.load(path_2)
outputs = model([audio_1, audio_2], sr=[sr_1, sr_2])
candidates = outputs["cands"]
print(candidates)
```
The model can also produces different captions using a Task Embedding input which indicates the dataset caption style. The default task is "clotho".
```py
outputs = model(path, task="clotho")
candidate = outputs["cands"][0]
print(candidate)
outputs = model(path, task="audiocaps")
candidate = outputs["cands"][0]
print(candidate)
```
## Usage with command line
Simply use the command `conette-predict` with `--audio PATH1 PATH2 ...` option. You can also export results to a CSV file using `--csv_export PATH`.
```bash
conette-predict --audio "/your/path/to/audio.wav"
```
## Performance
| Test data | SPIDEr (%) | SPIDEr-FL (%) | FENSE (%) | Vocab | Outputs | Scores |
| ------------- | ------------- | ------------- | ------------- | ------------- | ------------- | ------------- |
| AC-test | 44.14 | 43.98 | 60.81 | 309 | [Link](https://github.com/Labbeti/conette-audio-captioning/blob/main/results/conette/outputs_audiocaps_test.csv) | [Link](https://github.com/Labbeti/conette-audio-captioning/blob/main/results/conette/scores_audiocaps_test.yaml) |
| CL-eval | 30.97 | 30.87 | 51.72 | 636 | [Link](https://github.com/Labbeti/conette-audio-captioning/blob/main/results/conette/outputs_clotho_eval.csv) | [Link](https://github.com/Labbeti/conette-audio-captioning/blob/main/results/conette/scores_clotho_eval.yaml) |
This model checkpoint has been trained for the Clotho dataset, but it can also reach a good performance on AudioCaps with the "audiocaps" task.
## Limitations
The model has been trained on audio sampled at 32 kHz and lasting from 1 to 30 seconds. It can handle longer audio files, but it might give worse results.
## Citation
The preprint version of the paper describing CoNeTTE is available on arxiv: https://arxiv.org/pdf/2309.00454.pdf
```
@misc{labbé2023conette,
title = {CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding},
author = {Étienne Labbé and Thomas Pellegrini and Julien Pinquier},
year = 2023,
journal = {arXiv preprint arXiv:2309.00454},
url = {https://arxiv.org/pdf/2309.00454.pdf},
eprint = {2309.00454},
archiveprefix = {arXiv},
primaryclass = {cs.SD}
}
```
## Additional information
- Model weights are available on HuggingFace: https://huggingface.co/Labbeti/conette
- The encoder part of the architecture is based on a ConvNeXt model for audio classification, available here: https://huggingface.co/topel/ConvNeXt-Tiny-AT. More precisely, the encoder weights used are named "convnext_tiny_465mAP_BL_AC_70kit.pth", available on Zenodo: https://zenodo.org/record/8020843.
## Contact
Maintainer:
- Etienne Labbé "Labbeti": [email protected]