code used to train

currently setup to translate individual premises (sentences)

#datasets

  • Yale-LILY/FOLIO
  • apergo-ai/text2log (1661 records)

how to load

device = "cuda"
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"

model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.bfloat16, device_map=device)

reft_model = pyreft.ReftModel.load(
    "LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft", model
)

how to use

!git clone https://huggingface.co/LaferriereJC/Phi-3-mini-4k-instruct-FOL-pyreft
from transformers import AutoModelForCausalLM
import torch
import pyreft
import os
import transformers

device = 'cuda'
model_name_or_path = "microsoft/Phi-3-mini-4k-instruct"

attn_implementation = "eager"
torch_dtype = torch.float16
#"microsoft/Phi-3-mini-4k-instruct"

model = transformers.AutoModelForCausalLM.from_pretrained(
    model_name_or_path, torch_dtype=torch.bfloat16, device_map=device,trust_remote_code=True)


# Define the PyReFT configuration
layers = range(model.config.num_hidden_layers)
representations = [{
    "component": f"model.layers[{l}].output",
    "intervention": pyreft.LoreftIntervention(
        embed_dim=model.config.hidden_size, 
        low_rank_dimension=16
    )
} for l in layers]

reft_config = pyreft.ReftConfig(representations=representations)

# Initialize the PyReFT model
reft_model = pyreft.get_reft_model(model, reft_config)

# Load the saved PyReFT model
local_directory = "./Phi-3-mini-4k-instruct-FOL-pyreft"
interventions = {}
for l in layers:
    component = f"model.layers[{l}].output"
    file_path = os.path.join(local_directory, f"intkey_comp.{component}.unit.pos.nunit.1#0.bin")
    if os.path.exists(file_path):
        with open(file_path, "rb") as f:
            adjusted_key = f"comp.{component}.unit.pos.nunit.1#0"
            interventions[adjusted_key] = torch.load(f)

# Apply the loaded weights to the model
for component, state_dict in interventions.items():
    if component in reft_model.interventions:
        reft_model.interventions[component][0].load_state_dict(state_dict)
    else:
        print(f"Key mismatch: {component} not found in reft_model.interventions")

# Set the device to CUDA
reft_model.set_device("cuda")

# Verify the model
reft_model.print_trainable_parameters()

#model.half()
# get tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(
    model_name_or_path, model_max_length=216,
    padding_side="right", use_fast=True,
    attn_implementation=attn_implementation
    #, add_eos_token=True, add_bos_token=True
)

tokenizer.pad_token = tokenizer.eos_token

# position info about the interventions
share_weights = True # whether the prefix and suffix interventions sharing weights.
positions="f3+l3"    # the intervening positions of prefix tokens (f[irst]1) and suffix tokens (l[ast]1).
first_n, last_n = pyreft.parse_positions(positions)

terminators = [
    tokenizer.eos_token_id,
]

prompt_no_input_template = """\n<|user|>:%s</s>\n<|assistant|>:"""

test_instruction = f"""tell me something I don't know"""
# tokenize and prepare the input
prompt = prompt_no_input_template % test_instruction
prompt = tokenizer(prompt, return_tensors="pt").to(device)

unit_locations = torch.IntTensor([pyreft.get_intervention_locations(
    last_position=prompt["input_ids"].shape[-1], 
    first_n=first_n, 
    last_n=last_n,
    pad_mode="last",
    num_interventions=len(reft_config.representations),
    share_weights=share_weights
)]).permute(1, 0, 2).tolist()

_, reft_response = reft_model.generate(
    prompt, unit_locations={"sources->base": (None, unit_locations)},
    intervene_on_prompt=True, max_new_tokens=537, do_sample=True, top_k=50,temperature=0.7,
    eos_token_id=terminators, early_stopping=True
)
print(tokenizer.decode(reft_response[0], skip_special_tokens=True))

response

:tell me something I don't know</s> :exists x1.(_thing(x1) & _donknow(x1))

training settings

    per_device_train_batch_size=6,
    logging_steps=1,
    optim='paged_lion_8bit',
    gradient_checkpointing_kwargs={"use_reentrant": False},
    learning_rate=0.0003,
    warmup_ratio=.1,
    adam_beta2=0.95,
    adam_epsilon=0.00001,
    save_strategy='epoch',
    max_grad_norm=1.0,
    lr_scheduler_type='cosine',

Evaluation:

I kept tweaking the model until I got confirmations from chatgpt 4, but the final training error (1 epoch) came in consistently under .5 (10 point EMA with alpha of .42) Loss

image/png

:tell me something I don't know :exists x1.(_thing(x1) & _donknow(x1)) Does the fol expression fit?

Depending on how I asked (for example, it would almost always suggest revisions if I asked

  • Is the fol expression adequate?
  • How faithful is the fol expression?

)

Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .