Pre-trained sentence embedding models are the state-of-the-art of Sentence Embeddings for French.
Model is Fine-tuned using pre-trained flaubert/flaubert_base_uncased and Siamese BERT-Networks with 'sentences-transformers' combined with Augmented SBERT on dataset stsb along with Pair Sampling Strategies through 2 models CrossEncoder-camembert-large and dangvantuan/sentence-camembert-large
Usage
The model can be used directly (without a language model) as follows:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Lajavaness/sentence-flaubert-base")
sentences = ["Un avion est en train de décoller.",
"Un homme joue d'une grande flûte.",
"Un homme étale du fromage râpé sur une pizza.",
"Une personne jette un chat au plafond.",
"Une personne est en train de plier un morceau de papier.",
]
embeddings = model.encode(sentences)
Evaluation
The model can be evaluated as follows on the French test data of stsb.
from sentence_transformers import SentenceTransformer
from sentence_transformers.readers import InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from datasets import load_dataset
def convert_dataset(dataset):
dataset_samples=[]
for df in dataset:
score = float(df['similarity_score'])/5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[df['sentence1'],
df['sentence2']], label=score)
dataset_samples.append(inp_example)
return dataset_samples
# Loading the dataset for evaluation
df_dev = load_dataset("stsb_multi_mt", name="fr", split="dev")
df_test = load_dataset("stsb_multi_mt", name="fr", split="test")
# Convert the dataset for evaluation
# For Dev set:
dev_samples = convert_dataset(df_dev)
val_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
val_evaluator(model, output_path="./")
# For Test set:
test_samples = convert_dataset(df_test)
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
test_evaluator(model, output_path="./")
Test Result: The performance is measured using Pearson and Spearman correlation on the sts-benchmark:
- On dev
Model | Pearson correlation | Spearman correlation | #params |
---|---|---|---|
Lajavaness/sentence-flaubert-base | 87.14 | 87.10 | 137M |
Lajavaness/sentence-camembert-base | 86.88 | 86.73 | 110M |
dangvantuan/sentence-camembert-base | 86.73 | 86.54 | 110M |
inokufu/flaubert-base-uncased-xnli-sts | 85.85 | 85.71 | 137M |
distiluse-base-multilingual-cased | 79.22 | 79.16 | 135M |
- On test: Pearson and Spearman correlation are evaluated on many different benchmarks dataset:
Pearson score
Model | STS-B | STS12-fr | STS13-fr | STS14-fr | STS15-fr | STS16-fr | SICK-fr | params |
---|---|---|---|---|---|---|---|---|
Lajavaness/sentence-flaubert-base | 85.5 | 86.64 | 87.24 | 85.68 | 88.00 | 75.78 | 82.84 | 137M |
Lajavaness/sentence-camembert-base | 83.46 | 84.49 | 84.61 | 83.94 | 86.94 | 75.20 | 82.86 | 110M |
inokufu/flaubert-base-uncased-xnli-sts | 82.82 | 84.79 | 85.76 | 82.81 | 85.38 | 74.05 | 82.23 | 137M |
dangvantuan/sentence-camembert-base | 82.36 | 82.06 | 84.08 | 81.51 | 85.54 | 73.97 | 80.91 | 110M |
sentence-transformers/distiluse-base-multilingual-cased-v2 | 78.63 | 72.51 | 67.25 | 70.12 | 79.93 | 66.67 | 77.76 | 135M |
hugorosen/flaubert_base_uncased-xnli-sts | 78.38 | 79.00 | 77.61 | 76.56 | 79.03 | 71.22 | 80.58 | 137M |
antoinelouis/biencoder-camembert-base-mmarcoFR | 76.97 | 71.43 | 73.50 | 70.56 | 78.44 | 71.23 | 77.62 | 110M |
Spearman score
Model | STS-B | STS12-fr | STS13-fr | STS14-fr | STS15-fr | STS16-fr | SICK-fr | params |
---|---|---|---|---|---|---|---|---|
Lajavaness/sentence-flaubert-base | 85.67 | 80.00 | 86.91 | 84.59 | 88.10 | 77.84 | 77.55 | 137M |
inokufu/flaubert-base-uncased-xnli-sts | 83.07 | 77.34 | 85.88 | 80.96 | 85.70 | 76.43 | 77.00 | 137M |
Lajavaness/sentence-camembert-base | 82.92 | 77.71 | 84.19 | 81.83 | 87.04 | 76.81 | 76.36 | 110M |
dangvantuan/sentence-camembert-base | 81.64 | 75.45 | 83.86 | 78.63 | 85.66 | 75.36 | 74.18 | 110M |
sentence-transformers/distiluse-base-multilingual-cased-v2 | 77.49 | 69.80 | 68.85 | 68.17 | 80.27 | 70.04 | 72.49 | 135M |
hugorosen/flaubert_base_uncased-xnli-sts | 76.93 | 68.96 | 77.62 | 71.87 | 79.33 | 72.86 | 73.91 | 137M |
antoinelouis/biencoder-camembert-base-mmarcoFR | 75.55 | 66.89 | 73.90 | 67.14 | 78.78 | 72.64 | 72.03 | 110M |
Citation
@article{reimers2019sentence,
title={Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks},
author={Nils Reimers, Iryna Gurevych},
journal={https://arxiv.org/abs/1908.10084},
year={2019}
}
@article{martin2020camembert,
title={CamemBERT: a Tasty French Language Mode},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
journal={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
@article{thakur2020augmented,
title={Augmented SBERT: Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks},
author={Thakur, Nandan and Reimers, Nils and Daxenberger, Johannes and Gurevych, Iryna},
journal={arXiv e-prints},
pages={arXiv--2010},
year={2020}
- Downloads last month
- 1,545
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train Lajavaness/sentence-flaubert-base
Evaluation results
- Test Pearson correlation coefficient on Text Similarity frself-reported87.140