Training_Checkpoint

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1068
  • Accuracy: 0.971
  • F1: 0.9787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 63 0.3497 0.869 0.9042
No log 2.0 126 0.2406 0.918 0.9418
No log 3.0 189 0.1529 0.954 0.9665
No log 4.0 252 0.1176 0.966 0.9751
No log 5.0 315 0.1068 0.971 0.9787

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
67M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for LalasaMynalli/Training_Checkpoint

Finetuned
(7089)
this model