SentenceTransformer
This is a sentence-transformers model trained on the measuring-embeddings-v4 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Lauther/measuring-embeddings-v4.3")
# Run inference
sentences = [
'uncertainty points',
'What is a Fluid?\nA Fluid is the substance measured within a measurement system. It can be a gas or liquid, such as hydrocarbons, water, or other industrial fluids. Proper classification of fluids is essential for ensuring measurement accuracy, regulatory compliance, and operational efficiency. By identifying fluids correctly, the system applies the appropriate measurement techniques, processing methods, and reporting standards.',
'What is a Calibration Point?\nA Calibration Point represents a specific data entry in a calibration process, comparing an expected reference value to an actual measured value. These points are fundamental in ensuring measurement accuracy and identifying deviations.\n\nKey Aspects of Calibration Points:\n- Calibration Report Association: Each calibration point belongs to a specific calibration report, linking it to a broader calibration procedure.\n- Reference Values: Theoretical or expected values used as a benchmark for measurement validation.\n- Measured Values: The actual recorded values during calibration, reflecting the instrument’s response.\n- Errors: The difference between reference and measured values, indicating possible measurement inaccuracies.\nCalibration points are essential for evaluating instrument performance, ensuring compliance with standards, and maintaining measurement reliability.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
measuring-embeddings-v4
- Dataset: measuring-embeddings-v4 at 1e3ca2c
- Size: 3,075 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 7.55 tokens
- max: 17 tokens
- min: 80 tokens
- mean: 180.22 tokens
- max: 406 tokens
- min: 0.07
- mean: 0.21
- max: 0.95
- Samples:
sentence1 sentence2 score last calibrated span
What are historical report values?
These represent the recorded data points within flow computer reports. Unlike the report index, which serves as a reference to locate reports, these values contain the actual measurements and calculated data stored in the historical records.
Flow computer reports store two types of data values:
- Hourly data values: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on an hourly basis.
- Daily data values: Contain measured or calculated values (e.g., operational minutes, alarms set, etc.) recorded on a daily basis.
Each value is directly linked to its respective report index, ensuring traceability to the original flow computer record. These values maintain their raw integrity, providing a reliable source for analysis and validation.0.1
flow computer configuration
What is a Measurement Type?
Measurement types define the classification of measurements used within a system based on their purpose and regulatory requirements. These types include fiscal, appropriation, operational, and custody measurements.
- Fiscal measurements are used for tax and regulatory reporting, ensuring accurate financial transactions based on measured quantities.
- Appropriation measurements track resource allocation and ownership distribution among stakeholders.
- Operational measurements support real-time monitoring and process optimization within industrial operations.
- Custody measurements are essential for legal and contractual transactions, ensuring precise handover of fluids between parties.
These classifications play a crucial role in compliance, financial accuracy, and operational efficiency across industries such as oil and gas, water management, and energy distribution.0.1
uncertainty certificate number
What is an Uncertainty Composition?
An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.
Key Aspects of an Uncertainty Component:
- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.
- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.
- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.
Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.0.1
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
measuring-embeddings-v4
- Dataset: measuring-embeddings-v4 at 1e3ca2c
- Size: 659 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 659 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 7.63 tokens
- max: 17 tokens
- min: 80 tokens
- mean: 186.36 tokens
- max: 406 tokens
- min: 0.07
- mean: 0.2
- max: 0.9
- Samples:
sentence1 sentence2 score measurement system details
What is an Uncertainty Composition?
An Uncertainty Composition represents a specific factor that contributes to the overall uncertainty of a measurement system. These components are essential for evaluating the accuracy and reliability of measurements by identifying and quantifying the sources of uncertainty.
Key Aspects of an Uncertainty Component:
- Component Name: Defines the uncertainty factor (e.g., diameter, density, variance, covariance) influencing the measurement system.
- Value of Composition: Quantifies the component’s contribution to the total uncertainty, helping to analyze which factors have the greatest impact.
- Uncertainty File ID: Links the component to a specific uncertainty dataset for traceability and validation.
Understanding these components is critical for uncertainty analysis, ensuring compliance with industry standards and improving measurement precision.0.15
measurement system tag EMED-3102-02-010
What is a report index or historic index?
Indexes represent the recorded reports generated by flow computers, classified into two types:
- Hourly reports Index: Store data for hourly events.
- Daily reports Index: Strore data for daily events.
These reports, also referred to as historical data or flow computer historical records, contain raw, first-hand measurements directly collected from the flow computer. The data has not been processed or used in any calculations, preserving its original state for analysis or validation.
The index is essential for locating specific values within the report.0.24
static pressure
What is a Meter Stream?
A Meter Stream represents a measurement system configured within a flow computer. It serves as the interface between the physical measurement system and the computational processes that record and analyze flow data.
Key Aspects of a Meter Stream:
- Status: Indicates whether the meter stream is active or inactive.
- Measurement System Association: Links the meter stream to a specific measurement system, ensuring that the data collected corresponds to a defined physical setup.
- Flow Computer Association: Identifies the flow computer responsible for managing and recording the measurement system's data.
Why is a Meter Stream Important?
A meter stream is a critical component in flow measurement, as it ensures that the measurement system is correctly integrated into the flow computer for accurate monitoring and reporting. Since each flow computer can handle multiple meter streams, proper configuration is essential for maintaining data integrity and traceability.0.1
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 4per_device_eval_batch_size
: 4gradient_accumulation_steps
: 4learning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 4per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.8322 | 160 | 3.0564 | - |
0.8843 | 170 | 2.2963 | - |
0.9363 | 180 | 1.8767 | - |
0.9883 | 190 | 2.8634 | - |
1.0416 | 200 | 2.5195 | - |
1.0936 | 210 | 2.4094 | - |
1.1456 | 220 | 1.5141 | - |
1.1977 | 230 | 2.1366 | - |
1.2497 | 240 | 1.5389 | - |
1.3017 | 250 | 3.8265 | - |
1.3537 | 260 | 1.9989 | - |
1.4057 | 270 | 2.6037 | - |
1.4577 | 280 | 3.898 | - |
1.5098 | 290 | 2.9363 | - |
1.5618 | 300 | 3.3853 | 0.5155 |
1.6138 | 310 | 2.2995 | - |
1.6658 | 320 | 1.3945 | - |
1.7178 | 330 | 3.8312 | - |
1.7698 | 340 | 2.626 | - |
1.8218 | 350 | 1.5451 | - |
1.8739 | 360 | 1.1062 | - |
1.9259 | 370 | 2.6593 | - |
1.9779 | 380 | 1.773 | - |
2.0260 | 390 | 1.3937 | - |
2.0780 | 400 | 2.2228 | - |
2.1300 | 410 | 0.7027 | - |
2.1821 | 420 | 1.5933 | - |
2.2341 | 430 | 2.295 | - |
2.2861 | 440 | 1.042 | - |
2.3381 | 450 | 2.8671 | 0.3661 |
2.3901 | 460 | 1.879 | - |
2.4421 | 470 | 4.0556 | - |
2.4941 | 480 | 2.9677 | - |
2.5462 | 490 | 1.4443 | - |
2.5982 | 500 | 3.2575 | - |
2.6502 | 510 | 1.6124 | - |
2.7022 | 520 | 1.3976 | - |
2.7542 | 530 | 1.3161 | - |
2.8062 | 540 | 2.5047 | - |
2.8583 | 550 | 0.9757 | - |
2.9103 | 560 | 2.1051 | - |
2.9623 | 570 | 2.4919 | - |
3.0104 | 580 | 1.4737 | - |
3.0624 | 590 | 1.3318 | - |
3.1144 | 600 | 1.4474 | 0.4409 |
3.1664 | 610 | 2.3727 | - |
3.2185 | 620 | 0.6234 | - |
3.2705 | 630 | 1.9529 | - |
3.3225 | 640 | 1.5384 | - |
3.3745 | 650 | 1.5913 | - |
3.4265 | 660 | 0.6265 | - |
3.4785 | 670 | 2.1122 | - |
3.5306 | 680 | 1.8046 | - |
3.5826 | 690 | 0.8298 | - |
3.6346 | 700 | 1.4242 | - |
3.6866 | 710 | 1.5808 | - |
3.7386 | 720 | 1.1792 | - |
3.7906 | 730 | 2.7767 | - |
3.8427 | 740 | 1.7814 | - |
3.8947 | 750 | 0.5374 | 0.3227 |
3.9467 | 760 | 1.493 | - |
3.9987 | 770 | 1.8282 | - |
4.0468 | 780 | 1.6991 | - |
4.0988 | 790 | 0.7883 | - |
4.1508 | 800 | 0.841 | - |
4.2029 | 810 | 0.923 | - |
4.2549 | 820 | 0.3459 | - |
4.3069 | 830 | 2.3643 | - |
4.3589 | 840 | 0.9606 | - |
4.4109 | 850 | 0.7961 | - |
4.4629 | 860 | 1.749 | - |
4.5150 | 870 | 0.6536 | - |
4.5670 | 880 | 1.668 | - |
4.6190 | 890 | 0.5919 | - |
4.6710 | 900 | 1.2476 | 0.3258 |
4.7230 | 910 | 1.422 | - |
4.7750 | 920 | 0.8616 | - |
4.8270 | 930 | 0.2323 | - |
4.8791 | 940 | 2.7915 | - |
4.9311 | 950 | 0.6705 | - |
4.9831 | 960 | 1.7353 | - |
5.0312 | 970 | 1.7646 | - |
5.0832 | 980 | 1.4311 | - |
5.1352 | 990 | 0.7089 | - |
5.1873 | 1000 | 1.631 | - |
5.2393 | 1010 | 1.8051 | - |
5.2913 | 1020 | 0.5302 | - |
5.3433 | 1030 | 0.7428 | - |
5.3953 | 1040 | 0.5852 | - |
5.4473 | 1050 | 0.737 | 0.3283 |
5.4993 | 1060 | 1.492 | - |
5.5514 | 1070 | 0.9142 | - |
5.6034 | 1080 | 1.8887 | - |
5.6554 | 1090 | 1.1079 | - |
5.7074 | 1100 | 0.6984 | - |
5.7594 | 1110 | 1.7174 | - |
5.8114 | 1120 | 0.9411 | - |
5.8635 | 1130 | 1.286 | - |
5.9155 | 1140 | 2.1944 | - |
5.9675 | 1150 | 1.2478 | - |
6.0156 | 1160 | 0.7935 | - |
6.0676 | 1170 | 1.4886 | - |
6.1196 | 1180 | 1.3375 | - |
6.1717 | 1190 | 2.9167 | - |
6.2237 | 1200 | 0.3903 | 0.2734 |
6.2757 | 1210 | 1.326 | - |
6.3277 | 1220 | 0.3135 | - |
6.3797 | 1230 | 1.0881 | - |
6.4317 | 1240 | 1.5096 | - |
6.4837 | 1250 | 0.5525 | - |
6.5358 | 1260 | 0.3606 | - |
6.5878 | 1270 | 0.9334 | - |
6.6398 | 1280 | 0.5658 | - |
6.6918 | 1290 | 1.5978 | - |
6.7438 | 1300 | 0.4212 | - |
6.7958 | 1310 | 1.7793 | - |
6.8479 | 1320 | 1.5593 | - |
6.8999 | 1330 | 1.6738 | - |
6.9519 | 1340 | 0.3041 | - |
7.0 | 1350 | 0.5286 | 0.2737 |
7.0520 | 1360 | 1.7618 | - |
7.1040 | 1370 | 0.4629 | - |
7.1560 | 1380 | 0.4087 | - |
7.2081 | 1390 | 0.3099 | - |
7.2601 | 1400 | 0.6679 | - |
7.3121 | 1410 | 0.7688 | - |
7.3641 | 1420 | 1.223 | - |
7.4161 | 1430 | 0.8108 | - |
7.4681 | 1440 | 0.24 | - |
7.5202 | 1450 | 0.6616 | - |
7.5722 | 1460 | 1.5255 | - |
7.6242 | 1470 | 1.3865 | - |
7.6762 | 1480 | 0.2771 | - |
7.7282 | 1490 | 0.7809 | - |
7.7802 | 1500 | 0.2114 | 0.2259 |
7.8322 | 1510 | 1.6341 | - |
7.8843 | 1520 | 0.7665 | - |
7.9363 | 1530 | 0.7204 | - |
7.9883 | 1540 | 0.6557 | - |
8.0364 | 1550 | 2.0155 | - |
8.0884 | 1560 | 0.4718 | - |
8.1404 | 1570 | 0.1254 | - |
8.1925 | 1580 | 0.8067 | - |
8.2445 | 1590 | 0.3196 | - |
8.2965 | 1600 | 0.7162 | - |
8.3485 | 1610 | 0.1727 | - |
8.4005 | 1620 | 0.7634 | - |
8.4525 | 1630 | 0.2472 | - |
8.5046 | 1640 | 0.264 | - |
8.5566 | 1650 | 0.5994 | 0.1935 |
8.6086 | 1660 | 0.4445 | - |
8.6606 | 1670 | 0.9039 | - |
8.7126 | 1680 | 0.7927 | - |
8.7646 | 1690 | 0.4908 | - |
8.8166 | 1700 | 0.7486 | - |
8.8687 | 1710 | 1.377 | - |
8.9207 | 1720 | 1.025 | - |
8.9727 | 1730 | 1.1134 | - |
9.0208 | 1740 | 0.271 | - |
9.0728 | 1750 | 1.0931 | - |
9.1248 | 1760 | 0.7956 | - |
9.1769 | 1770 | 1.2794 | - |
9.2289 | 1780 | 0.3901 | - |
9.2809 | 1790 | 0.9033 | - |
9.3329 | 1800 | 0.4934 | 0.1680 |
9.3849 | 1810 | 0.5104 | - |
9.4369 | 1820 | 0.2879 | - |
9.4889 | 1830 | 0.6565 | - |
9.5410 | 1840 | 0.4523 | - |
9.5930 | 1850 | 0.7147 | - |
9.6450 | 1860 | 0.354 | - |
9.6970 | 1870 | 0.277 | - |
9.7490 | 1880 | 0.2066 | - |
9.8010 | 1890 | 0.6588 | - |
9.8531 | 1900 | 0.3789 | - |
9.9051 | 1910 | 0.8525 | - |
9.9571 | 1920 | 0.366 | - |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.